Using stochastic resonance of two-level systems to increase qubit decoherence times
- URL: http://arxiv.org/abs/2407.18829v1
- Date: Fri, 26 Jul 2024 15:49:01 GMT
- Title: Using stochastic resonance of two-level systems to increase qubit decoherence times
- Authors: Yujun Choi, S. N. Coppersmith, Robert Joynt,
- Abstract summary: Two-level systems (TLS) are the major source of dephasing of spin qubits in numerous quantum computing platforms.
We show that when an oscillating field is applied to a TLS, resonance can occur and the noise spectrum is moved to higher frequencies.
Details of this effect depend on the physical properties of the noise sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-level systems (TLS) are the major source of dephasing of spin qubits in numerous quantum computing platforms. In spite of much effort, it has been difficult to substantially mitigate the effects of this noise or, in many cases, to fully understand its physical origin. We propose a method to make progress on both of these issues. When an oscillating field is applied to a TLS, stochastic resonance can occur and the noise spectrum is moved to higher frequencies. This shift in the TLS noise spectrum will increase the dephasing times of the qubits that they influence. Furthermore, the details of this effect depend on the physical properties of the noise sources. Thus one can use qubit spectroscopy to investigate their physical properties, specifically the extent to which the TLS themselves possess quantum coherence. We find that it should be possible to determine the dephasing rate and the energy level separation of the TLS themselves in this way.
Related papers
- Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Qubit dephasing by spectrally diffusing quantum two-level systems [44.99833362998488]
We investigate the pure dephasing of a Josephson qubit due to the spectral diffusion of two-level systems that are close to resonance with the qubit.
We show that this pure dephasing mechanism can be mitigated, allowing enhancement of superconducting qubits coherence time.
arXiv Detail & Related papers (2023-06-27T07:48:42Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Simulating noise on a quantum processor: interactions between a qubit
and resonant two-level system bath [0.3769303106863453]
We build a model that incorporates the standard model, the electric field distributions in the qubit, and open quantum system dynamics.
We find that the 200 most strongly coupled TLSs can accurately describe the qubit energy relaxation time.
Our work can provide guidance for future quantum processor designs with improved qubit coherence times.
arXiv Detail & Related papers (2022-11-15T22:12:07Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Two-level systems in superconducting quantum devices due to trapped
quasiparticles [0.0]
We show that non-equilibrium quasiparticles can induce qubit relaxation in superconducting quantum circuits.
Our results imply that trapped QPs can induce qubit relaxation.
arXiv Detail & Related papers (2020-04-06T08:38:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.