論文の概要: HADES: Detecting Active Directory Attacks via Whole Network Provenance Analytics
- arxiv url: http://arxiv.org/abs/2407.18858v1
- Date: Fri, 26 Jul 2024 16:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:49:41.608273
- Title: HADES: Detecting Active Directory Attacks via Whole Network Provenance Analytics
- Title(参考訳): HADES:全ネットワーク・プロバンス・アナリティクスによるアクティブ・ディレクトリ・アタックの検出
- Authors: Qi Liu, Kaibin Bao, Wajih Ul Hassan, Veit Hagenmeyer,
- Abstract要約: Active Directory(AD)は、Advanced Persistence Threat(APT)アクターの一番のターゲットである。
我々は、正確な因果関係に基づくクロスマシントレースを行うことができる最初のPIDSであるHADESを提案する。
我々は、AD攻撃の分析に根ざした、新しい軽量認証異常検出モデルを導入する。
- 参考スコア(独自算出の注目度): 7.203330561731627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to its crucial role in identity and access management in modern enterprise networks, Active Directory (AD) is a top target of Advanced Persistence Threat (APT) actors. Conventional intrusion detection systems (IDS) excel at identifying malicious behaviors caused by malware, but often fail to detect stealthy attacks launched by APT actors. Recent advance in provenance-based IDS (PIDS) shows promises by exposing malicious system activities in causal attack graphs. However, existing approaches are restricted to intra-machine tracing, and unable to reveal the scope of attackers' traversal inside a network. We propose HADES, the first PIDS capable of performing accurate causality-based cross-machine tracing by leveraging a novel concept called logon session based execution partitioning to overcome several challenges in cross-machine tracing. We design HADES as an efficient on-demand tracing system, which performs whole-network tracing only when it first identifies an authentication anomaly signifying an ongoing AD attack, for which we introduce a novel lightweight authentication anomaly detection model rooted in our extensive analysis of AD attacks. To triage attack alerts, we present a new algorithm integrating two key insights we identified in AD attacks. Our evaluations show that HADES outperforms both popular open source detection systems and a prominent commercial AD attack detector.
- Abstract(参考訳): 現代のエンタープライズネットワークにおけるアイデンティティとアクセス管理において重要な役割を担っているため、Active Directory(AD)はAdvanced Persistence Threat(APT)アクターの標的となっている。
従来の侵入検知システム(IDS)は、マルウェアによって引き起こされる悪意のある行動を特定するのに優れているが、しばしばAPTアクターによって起動される盗難攻撃を検出するのに失敗する。
証明に基づくIDS(PIDS)の最近の進歩は、因果攻撃グラフに悪意のあるシステムアクティビティを露出させることによる約束を示す。
しかし、既存のアプローチはマシン内トレースに限定されており、ネットワーク内の攻撃者の移動範囲を明らかにすることはできない。
HADESは,クロスマシントレースにおけるいくつかの課題を克服するために,ログセッションベースの実行パーティショニングと呼ばれる新しい概念を活用することで,正確な因果関係に基づくクロスマシントレースを実現する最初のPIDSである。
我々は、HADESを効率的なオンデマンドトレースシステムとして設計し、現在進行中のAD攻撃を示す認証異常を最初に特定したときのみ全ネットワークトレースを行う。
攻撃警告をトリアージするために、AD攻撃で確認した2つの重要な洞察を統合する新しいアルゴリズムを提案する。
評価の結果,HADESは人気のあるオープンソース検出システムと,有名なAD攻撃検知器の両方に優れていた。
関連論文リスト
- Lateral Movement Detection via Time-aware Subgraph Classification on Authentication Logs [4.893077353126799]
側方移動は、ネットワークにおける先進的永続的脅威(APT)攻撃の重要な構成要素である。
LMDetectと呼ばれるマルチスケール横移動検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-15T15:35:56Z) - Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection [0.3199881502576702]
侵入検知システム(IDS)は、警告を提供することで本質的に脅威を軽減することができる。
これらの脅威を検出するため、さまざまな機械学習(ML)モデルとディープラーニング(DL)モデルが提案されている。
本稿では、重なり合うSHAPプロットを用いた説明可能な人工知能(XAI)に基づく視覚分析手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T23:08:34Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
PVM(Pre-trained Vision Model)は、下流タスクを微調整する際、例外的なパフォーマンスのため、主要なコンポーネントとなっている。
本稿では,PVMにバックドアを埋め込んだトロイの木馬攻撃を提案する。
バックドア攻撃の成功において、クロスタスクアクティベーションとショートカット接続がもたらす課題を強調します。
論文 参考訳(メタデータ) (2023-12-23T05:51:40Z) - Kairos: Practical Intrusion Detection and Investigation using
Whole-system Provenance [4.101641763092759]
警告グラフは、システムの実行履歴を記述した構造化監査ログである。
証明に基づく侵入検知システム(PIDS)の開発を促進する4つの共通次元を同定する。
4次元のデシラタを同時に満足させる最初のPIDSであるKAIROSについて述べる。
論文 参考訳(メタデータ) (2023-08-09T16:04:55Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
個人再識別(ReID)は、広範囲の現実世界のアプリケーションで急速に進展しているが、敵攻撃の重大なリスクも生じている。
動的トリガー・インビジブル・バックドア・アタック(DT-IBA)と呼ばれる,ReIDに対する新たなバックドア・アタックを提案する。
本研究は,提案したベンチマークデータセットに対する攻撃の有効性と盗聴性を広範囲に検証し,攻撃に対する防御手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-11-20T10:08:28Z) - Using EBGAN for Anomaly Intrusion Detection [13.155954231596434]
ネットワークレコードを通常のトラフィックまたは悪意のあるトラフィックに分類するEBGANベースの侵入検知手法であるIDS-EBGANを提案する。
IDS-EBGANのジェネレータは、トレーニングセット内の元の悪意のあるネットワークトラフィックを、敵対的な悪意のある例に変換する責任がある。
テスト中、IDS-EBGANは識別器の再構成誤差を使用してトラフィックレコードを分類する。
論文 参考訳(メタデータ) (2022-06-21T13:49:34Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
ネットワーク侵入検知システム(英: Network Intrusion Detection System、IDS)は、ネットワークトラフィックを観察することによって、不正かつ悪意のない行動を特定するためのツールである。
本稿では,攻撃対象のシステムにダメージを与える前に,ネットワーク攻撃を防止するために,エンド・ツー・エンドの早期侵入検知システムを提案する。
論文 参考訳(メタデータ) (2022-01-27T16:35:37Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Open-set Adversarial Defense [93.25058425356694]
オープンセット認識システムは敵攻撃に対して脆弱であることを示す。
本研究の目的は,OSAD(Open-Set Adrial Defense, Open-Set Adrial Defense)機構の必要性である。
本稿はOSAD問題に対する解決策として,OSDN(Open-Set Defense Network)を提案する。
論文 参考訳(メタデータ) (2020-09-02T04:35:33Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。