論文の概要: Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection
- arxiv url: http://arxiv.org/abs/2411.02670v1
- Date: Mon, 04 Nov 2024 23:08:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:12.321134
- Title: Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection
- Title(参考訳): MLによる侵入検出における誤分類の診断のためのSHAPプロットの視覚的解析
- Authors: Maraz Mia, Mir Mehedi A. Pritom, Tariqul Islam, Kamrul Hasan,
- Abstract要約: 侵入検知システム(IDS)は、警告を提供することで本質的に脅威を軽減することができる。
これらの脅威を検出するため、さまざまな機械学習(ML)モデルとディープラーニング(DL)モデルが提案されている。
本稿では、重なり合うSHAPプロットを用いた説明可能な人工知能(XAI)に基づく視覚分析手法を提案する。
- 参考スコア(独自算出の注目度): 0.3199881502576702
- License:
- Abstract: Intrusion detection has been a commonly adopted detective security measures to safeguard systems and networks from various threats. A robust intrusion detection system (IDS) can essentially mitigate threats by providing alerts. In networks based IDS, typically we deal with cyber threats like distributed denial of service (DDoS), spoofing, reconnaissance, brute-force, botnets, and so on. In order to detect these threats various machine learning (ML) and deep learning (DL) models have been proposed. However, one of the key challenges with these predictive approaches is the presence of false positive (FP) and false negative (FN) instances. This FPs and FNs within any black-box intrusion detection system (IDS) make the decision-making task of an analyst further complicated. In this paper, we propose an explainable artificial intelligence (XAI) based visual analysis approach using overlapping SHAP plots that presents the feature explanation to identify potential false positive and false negatives in IDS. Our approach can further provide guidance to security analysts for effective decision-making. We present case study with multiple publicly available network traffic datasets to showcase the efficacy of our approach for identifying false positive and false negative instances. Our use-case scenarios provide clear guidance for analysts on how to use the visual analysis approach for reliable course-of-actions against such threats.
- Abstract(参考訳): 侵入検知は、様々な脅威からシステムやネットワークを保護するために一般的に採用されている刑事セキュリティ対策である。
堅牢な侵入検知システム(IDS)は、警告を提供することで本質的に脅威を軽減することができる。
ネットワークベースのIDSでは、一般的に、分散サービス拒否(DDoS)、スプーフィング、偵察、ブルートフォース、ボットネットなどのサイバー脅威に対処します。
これらの脅威を検出するため、さまざまな機械学習(ML)モデルとディープラーニング(DL)モデルが提案されている。
しかしながら、これらの予測アプローチにおける重要な課題の1つは、偽陽性(FP)と偽陰性(FN)のインスタンスの存在である。
ブラックボックス侵入検知システム(IDS)内のこのFPとFNは、アナリストの意思決定タスクをさらに複雑にする。
本稿では、重なり合うSHAPプロットを用いた説明可能な人工知能(XAI)に基づく視覚分析手法を提案する。
我々のアプローチは、効果的な意思決定のためのセキュリティアナリストへのガイダンスを提供することができる。
本稿では,複数の公開ネットワークトラフィックデータセットを用いて,偽陽性と偽陰性を識別する手法の有効性を示す。
当社のユースケースシナリオは、このような脅威に対する信頼できる行動にビジュアル分析アプローチを使う方法について、アナリストに明確なガイダンスを提供する。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
Applications with Categorical Inputs [29.907921481157974]
敵攻撃に対する堅牢性は、機械学習のデプロイメントにおける重要な信頼の1つだ。
本稿では,ML駆動型サイバーセキュリティクリティカルな幅広いアプリケーションを対象とした,最適かつ高効率な対向ロバスト性評価プロトコルを提案する。
本研究では,ドメインに依存しないロバスト性評価手法を用いて,偽ニュースの検出と侵入検知問題に関する実験を行った。
論文 参考訳(メタデータ) (2022-12-13T18:12:02Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
ネットワーク侵入検知システム(英: Network Intrusion Detection System、IDS)は、ネットワークトラフィックを観察することによって、不正かつ悪意のない行動を特定するためのツールである。
本稿では,攻撃対象のシステムにダメージを与える前に,ネットワーク攻撃を防止するために,エンド・ツー・エンドの早期侵入検知システムを提案する。
論文 参考訳(メタデータ) (2022-01-27T16:35:37Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。