Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
- URL: http://arxiv.org/abs/2407.18950v2
- Date: Sun, 8 Sep 2024 14:33:08 GMT
- Title: Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
- Authors: Jongwoo Seo,
- Abstract summary: This paper argues that AI judgments exhibit a form that cannot be understood in terms of the characteristics of human judgments according to Kant.
I show that concepts without physical predicates are not easy to explain when their functions are shown through vision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kant's Critique of Pure Reason, a major contribution to the history of epistemology, proposes a table of categories to elucidate the structure of the a priori principle of human judgment. The technology of artificial intelligence (AI), based on functionalism, claims to simulate or replicate human judgment. To assess this claim, it is necessary to study whether AI judgment possesses the characteristics of human judgment. This paper argues that AI judgments exhibit a form that cannot be understood in terms of the characteristics of human judgments according to Kant. Because the characteristics of judgment overlap, we can call this AI's uncertainty. Then, I show that concepts without physical intuitions are not easy to explain when their functions are shown through vision. Finally, I illustrate that even if AI makes sentences through subject and predicate in natural language, which are components of judgment, it is difficult to determine whether AI understands the concepts to the level humans can accept. This shows that it is questionable whether the explanation through natural language is reliable.
Related papers
- The AI Ethical Resonance Hypothesis: The Possibility of Discovering Moral Meta-Patterns in AI Systems [0.0]
The paper proposes that advanced AI systems may emerge with the ability to identify subtle moral patterns that are invisible to the human mind.<n>The paper explores the possibility that by processing and synthesizing large amounts of ethical contexts, AI systems may discover moral meta-patterns that transcend cultural, historical, and individual biases.
arXiv Detail & Related papers (2025-07-13T08:28:06Z) - Epistemic Scarcity: The Economics of Unresolvable Unknowns [0.0]
We argue that AI systems are incapable of performing the core functions of economic coordination.<n>We critique dominant ethical AI frameworks as extensions of constructivist rationalism.
arXiv Detail & Related papers (2025-07-02T08:46:24Z) - A Representationalist, Functionalist and Naturalistic Conception of Intelligence as a Foundation for AGI [0.0]
The article analyses foundational principles relevant to the creation of artificial general intelligence (AGI)<n> Intelligence is understood as the ability to create novel skills that allow to achieve goals under previously unknown conditions.<n>It is shown that AGI can gain a more fundamental access to the world than humans, although it is limited by the No Free Lunch theorems.
arXiv Detail & Related papers (2025-03-10T17:58:00Z) - On Benchmarking Human-Like Intelligence in Machines [77.55118048492021]
We argue that current AI evaluation paradigms are insufficient for assessing human-like cognitive capabilities.<n>We identify a set of key shortcomings: a lack of human-validated labels, inadequate representation of human response variability and uncertainty, and reliance on simplified and ecologically-invalid tasks.
arXiv Detail & Related papers (2025-02-27T20:21:36Z) - A.I. go by many names: towards a sociotechnical definition of artificial intelligence [0.0]
Defining artificial intelligence (AI) is a persistent challenge, often muddied by technical ambiguity and varying interpretations.
This essay makes a case for a sociotechnical definition of AI, which is essential for researchers who require clarity in their work.
arXiv Detail & Related papers (2024-10-17T11:25:50Z) - Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills [24.04643864795939]
People's decision-making abilities often fail to improve when they rely on AI for decision-support.
Most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking.
We introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice.
arXiv Detail & Related papers (2024-10-05T18:21:04Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - On the consistent reasoning paradox of intelligence and optimal trust in AI: The power of 'I don't know' [79.69412622010249]
Consistent reasoning, which lies at the core of human intelligence, is the ability to handle tasks that are equivalent.
CRP asserts that consistent reasoning implies fallibility -- in particular, human-like intelligence in AI necessarily comes with human-like fallibility.
arXiv Detail & Related papers (2024-08-05T10:06:53Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
We use a novel semantic approach to achieve decidability.
Specifically, we augment the logic of knowledge S5$_n$ and with an interaction axiom called (knowledge) commutativity.
We prove that our framework admits a finitary non-fixpoint characterization of common knowledge, which is of independent interest.
arXiv Detail & Related papers (2023-07-28T11:26:26Z) - Categorical Foundations of Explainable AI: A Unifying Theory [8.637435154170916]
This paper presents the first mathematically rigorous definitions of key XAI notions and processes, using the well-funded formalism of Category theory.
We show that our categorical framework allows to: (i) model existing learning schemes and architectures, (ii) formally define the term "explanation", (iii) establish a theoretical basis for XAI, and (iv) analyze commonly overlooked aspects of explaining methods.
arXiv Detail & Related papers (2023-04-27T11:10:16Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
arXiv Detail & Related papers (2022-07-19T16:20:37Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it.
We use folk concepts of behavior as a framework of social attribution by the human explainee.
arXiv Detail & Related papers (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Some Critical and Ethical Perspectives on the Empirical Turn of AI
Interpretability [0.0]
We consider two issues currently faced by Artificial Intelligence development: the lack of ethics and interpretability of AI decisions.
We experimentally show that the empirical and liberal turn of the production of explanations tends to select AI explanations with a low denunciatory power.
We propose two scenarios for the future development of ethical AI: more external regulation or more liberalization of AI explanations.
arXiv Detail & Related papers (2021-09-20T14:41:50Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Cognitive Argumentation and the Suppression Task [1.027974860479791]
This paper addresses the challenge of modeling human reasoning, within a new framework called Cognitive Argumentation.
The framework relies on cognitive principles, based on empirical and theoretical work in Cognitive Science, to adapt a general and abstract framework of computational argumentation from AI.
We argue that Cognitive Argumentation provides a coherent and cognitively adequate model for human conditional reasoning.
arXiv Detail & Related papers (2020-02-24T10:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.