Low-Latency Privacy-Preserving Deep Learning Design via Secure MPC
- URL: http://arxiv.org/abs/2407.18982v1
- Date: Wed, 24 Jul 2024 07:01:21 GMT
- Title: Low-Latency Privacy-Preserving Deep Learning Design via Secure MPC
- Authors: Ke Lin, Yasir Glani, Ping Luo,
- Abstract summary: Secure multi-party computation (MPC) facilitates privacy-preserving computation between multiple parties without leaking private information.
This work proposes a low-latency secret-sharing-based MPC design that reduces unnecessary communication rounds during the execution of MPC protocols.
- Score: 31.35072624488929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Secure multi-party computation (MPC) facilitates privacy-preserving computation between multiple parties without leaking private information. While most secure deep learning techniques utilize MPC operations to achieve feasible privacy-preserving machine learning on downstream tasks, the overhead of the computation and communication still hampers their practical application. This work proposes a low-latency secret-sharing-based MPC design that reduces unnecessary communication rounds during the execution of MPC protocols. We also present a method for improving the computation of commonly used nonlinear functions in deep learning by integrating multivariate multiplication and coalescing different packets into one to maximize network utilization. Our experimental results indicate that our method is effective in a variety of settings, with a speedup in communication latency of $10\sim20\%$.
Related papers
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information.
We introduce efficient protocol for secure linear function evaluation.
We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models.
arXiv Detail & Related papers (2024-11-14T08:55:14Z) - Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification [50.28867343337997]
This work presents a TinyML-based semantic communication framework for few-shot wireless image classification.
We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving.
meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks.
arXiv Detail & Related papers (2024-09-03T05:56:55Z) - Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs)
In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs.
arXiv Detail & Related papers (2024-06-12T06:41:47Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
We propose a solution to guarantee privacy in Federated Learning schemes.
Our proposal is based on the Berrut Approximated Coded Computing, adapted to a Secret Sharing configuration.
arXiv Detail & Related papers (2024-05-02T20:03:13Z) - On Building Myopic MPC Policies using Supervised Learning [0.0]
This paper considers an alternative strategy, where supervised learning is used to learn the optimal value function offline instead of learning the optimal policy.
This can then be used as the cost-to-go function in a myopic MPC with a very short prediction horizon.
arXiv Detail & Related papers (2024-01-23T08:08:09Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - MPC-Pipe: an Efficient Pipeline Scheme for Secure Multi-party Machine Learning Inference [5.7203077366666015]
We show that it is possible to carefully orchestrate the computation and communication steps to overlap.
We propose MPC-Pipe, an efficient MPC system for both training and inference of ML workloads.
arXiv Detail & Related papers (2022-09-27T19:16:26Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
We present a learning algorithm for training a single policy that imitates multiple gaits of a walking robot.
We use and extend MPC-Net, which is an Imitation Learning approach guided by Model Predictive Control.
We validate our approach on hardware and show that a single learned policy can replace its teacher to control multiple gaits.
arXiv Detail & Related papers (2021-03-26T08:48:53Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.