Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
- URL: http://arxiv.org/abs/2409.12978v1
- Date: Tue, 3 Sep 2024 05:56:55 GMT
- Title: Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
- Authors: Eslam Eldeeb, Mohammad Shehab, Hirley Alves, Mohamed-Slim Alouini,
- Abstract summary: This work presents a TinyML-based semantic communication framework for few-shot wireless image classification.
We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving.
meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks.
- Score: 50.28867343337997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic and goal-oriented (SGO) communication is an emerging technology that only transmits significant information for a given task. Semantic communication encounters many challenges, such as computational complexity at end users, availability of data, and privacy-preserving. This work presents a TinyML-based semantic communication framework for few-shot wireless image classification that integrates split-learning and meta-learning. We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving. In addition, meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks. The proposed algorithm is tested using a data set of images of hand-written letters. In addition, we present an uncertainty analysis of the predictions using conformal prediction (CP) techniques. Simulation results show that the proposed Semantic-MSL outperforms conventional schemes by achieving 20 % gain on classification accuracy using fewer data points, yet less training energy consumption.
Related papers
- Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
Continual learning allows models to learn from new data while retaining previously learned knowledge.
The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes.
We propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings.
arXiv Detail & Related papers (2024-08-02T07:51:44Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture.
Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part.
Considering the associated texts to the images can help to improve the accuracy depending on the goal.
arXiv Detail & Related papers (2021-07-08T10:54:59Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - SML: Semantic Meta-learning for Few-shot Semantic Segmentation [27.773396307292497]
We propose a novel meta-learning framework, Semantic Meta-Learning, which incorporates class-level semantic descriptions in the generated prototypes for this problem.
In addition, we propose to use the well established technique, ridge regression, to not only bring in the class-level semantic information, but also to effectively utilise the information available from multiple images present in the training data for prototype computation.
arXiv Detail & Related papers (2020-09-14T18:26:46Z) - Information-Theoretic Generalization Bounds for Meta-Learning and
Applications [42.275148861039895]
Key performance measure for meta-learning is the meta-generalization gap.
This paper presents novel information-theoretic upper bounds on the meta-generalization gap.
arXiv Detail & Related papers (2020-05-09T05:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.