Machine Learning for Equitable Load Shedding: Real-time Solution via Learning Binding Constraints
- URL: http://arxiv.org/abs/2407.18989v2
- Date: Mon, 30 Sep 2024 04:19:10 GMT
- Title: Machine Learning for Equitable Load Shedding: Real-time Solution via Learning Binding Constraints
- Authors: Yuqi Zhou, Joseph Severino, Sanjana Vijayshankar, Juliette Ugirumurera, Jibo Sanyal,
- Abstract summary: We present an efficient machine learning algorithm to enable millisecond-level computation for the optimization-based load shedding problem.
Numerical studies on both a 3-bus toy example and a realistic RTS-GMLC system have demonstrated the validity and efficiency of the proposed algorithm.
- Score: 1.3345486884341395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely and effective load shedding in power systems is critical for maintaining supply-demand balance and preventing cascading blackouts. To eliminate load shedding bias against specific regions in the system, optimization-based methods are uniquely positioned to help balance between economical and equity considerations. However, the resulting optimization problem involves complex constraints, which can be time-consuming to solve and thus cannot meet the real-time requirements of load shedding. To tackle this challenge, in this paper we present an efficient machine learning algorithm to enable millisecond-level computation for the optimization-based load shedding problem. Numerical studies on both a 3-bus toy example and a realistic RTS-GMLC system have demonstrated the validity and efficiency of the proposed algorithm for delivering equitable and real-time load shedding decisions.
Related papers
- Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
We propose a proposed machine-learning supported approach to model predictive control.
We propose approximating part of the problem horizon, while maintaining safety guarantees.
The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response.
arXiv Detail & Related papers (2024-08-19T08:13:37Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sys is a framework that harnesses optimal transport theory for data repair under Conditional Independence (CI) constraints.
We develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data.
arXiv Detail & Related papers (2024-03-04T18:23:55Z) - Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow [20.078717680640214]
Security-Constrained Optimal Power Flow (SCOPF) plays a crucial role in power grid stability but becomes increasingly complex as systems grow.
This paper introduces PDL-SCOPF, a self-supervised end-to-end primal-dual learning framework for producing near-optimal solutions to large-scale SCOPF problems.
arXiv Detail & Related papers (2023-11-29T20:36:35Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Computation Resource Allocation Solution in Recommender Systems [19.456109814747048]
We propose a computation resource allocation solution (CRAS) that maximizes the business goal with limited computation resources and response time.
The effectiveness of our method is verified by extensive experiments based on the real dataset from Taobao.com.
arXiv Detail & Related papers (2021-03-03T08:41:43Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.