Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks
- URL: http://arxiv.org/abs/2408.09781v1
- Date: Mon, 19 Aug 2024 08:13:37 GMT
- Title: Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks
- Authors: Hendrik Alsmeier, Anton Savchenko, Rolf Findeisen,
- Abstract summary: We propose a proposed machine-learning supported approach to model predictive control.
We propose approximating part of the problem horizon, while maintaining safety guarantees.
The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The expansion in automation of increasingly fast applications and low-power edge devices poses a particular challenge for optimization based control algorithms, like model predictive control. Our proposed machine-learning supported approach addresses this by utilizing a feed-forward neural network to reduce the computation load of the online-optimization. We propose approximating part of the problem horizon, while maintaining safety guarantees -- constraint satisfaction -- via the remaining optimization part of the controller. The approach is validated in simulation, demonstrating an improvement in computational efficiency, while maintaining guarantees and near-optimal performance. The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response, such as robotics and embedded applications with limited computational resources.
Related papers
- Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC [13.71241401034042]
This paper proposes a distributed trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method.
Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance.
arXiv Detail & Related papers (2024-03-16T13:50:31Z) - The Fusion of Deep Reinforcement Learning and Edge Computing for Real-time Monitoring and Control Optimization in IoT Environments [2.0380092516669235]
This paper proposes an optimization control system based on deep reinforcement learning and edge computing.
Results demonstrate that this approach reduces cloud-edge communication latency, accelerates response to abnormal situations, reduces system failure rates, extends average equipment operating time, and saves costs for manual maintenance and replacement.
arXiv Detail & Related papers (2024-02-28T12:01:06Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
We propose a deep learning-based optimization framework called Iterative Order-Preserving policy Optimization (IOPO)
IOPO enables the generation of energy-efficient task-offloading decisions within milliseconds.
Experimental results demonstrate that the proposed framework can generate energy-efficient task-offloading decisions within a very short time period.
arXiv Detail & Related papers (2023-07-17T13:32:02Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
We integrate Neural Networks with the Pontryagin's Maximum Principle (PMP), and propose a sample efficient framework NN-PMP-Gradient.
The resulting controller can be implemented for systems with unknown and complex dynamics.
Compared with the widely applied model-free and model-based reinforcement learning (RL) algorithms, our NN-PMP-Gradient achieves higher sample-efficiency and performance in terms of control objectives.
arXiv Detail & Related papers (2022-12-30T06:47:03Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Neural Predictive Control for the Optimization of Smart Grid Flexibility
Schedules [0.0]
Model predictive control (MPC) is a method to formulate the optimal scheduling problem for grid flexibilities in a mathematical manner.
MPC methods promise accurate results for time-constrained grid optimization but they are inherently limited by the calculation time needed for large and complex power system models.
A Neural Predictive Control scheme is proposed to learn optimal control policies for linear and nonlinear power systems through imitation.
arXiv Detail & Related papers (2021-08-19T15:12:35Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.