論文の概要: Sparse Refinement for Efficient High-Resolution Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2407.19014v1
- Date: Fri, 26 Jul 2024 18:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:12:16.007808
- Title: Sparse Refinement for Efficient High-Resolution Semantic Segmentation
- Title(参考訳): 高分解能セマンティックセグメンテーションのためのスパースリファインメント
- Authors: Zhijian Liu, Zhuoyang Zhang, Samir Khaki, Shang Yang, Haotian Tang, Chenfeng Xu, Kurt Keutzer, Song Han,
- Abstract要約: SparseRefineは、スパース高精細化を伴う密度の低分解能予測を強化する。
既存のセマンティックセグメンテーションモデルにシームレスに統合することができる。
HRNet-W48、SegFormer-B5、Mask2Former-T/L、SegNeXt-Lに1.5から3.7倍のスピードアップを実現している。
- 参考スコア(独自算出の注目度): 40.243181997916615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation empowers numerous real-world applications, such as autonomous driving and augmented/mixed reality. These applications often operate on high-resolution images (e.g., 8 megapixels) to capture the fine details. However, this comes at the cost of considerable computational complexity, hindering the deployment in latency-sensitive scenarios. In this paper, we introduce SparseRefine, a novel approach that enhances dense low-resolution predictions with sparse high-resolution refinements. Based on coarse low-resolution outputs, SparseRefine first uses an entropy selector to identify a sparse set of pixels with high entropy. It then employs a sparse feature extractor to efficiently generate the refinements for those pixels of interest. Finally, it leverages a gated ensembler to apply these sparse refinements to the initial coarse predictions. SparseRefine can be seamlessly integrated into any existing semantic segmentation model, regardless of CNN- or ViT-based. SparseRefine achieves significant speedup: 1.5 to 3.7 times when applied to HRNet-W48, SegFormer-B5, Mask2Former-T/L and SegNeXt-L on Cityscapes, with negligible to no loss of accuracy. Our "dense+sparse" paradigm paves the way for efficient high-resolution visual computing.
- Abstract(参考訳): セマンティックセグメンテーションは、自律運転や拡張現実/混合現実など、多くの現実世界の応用を促進する。
これらのアプリケーションは、細部を捉えるために高解像度の画像(例:8メガピクセル)で動くことが多い。
しかし、これは、レイテンシに敏感なシナリオでのデプロイメントを妨げる、相当な計算複雑性のコストが伴う。
本稿では,スパース高精細化による高密度低分解能予測を高速化する新しい手法であるスパースリファインを紹介する。
粗い低解像度の出力に基づいて、SparseRefineはまずエントロピーセレクタを使用して、高いエントロピーを持つスパースピクセルの集合を識別する。
次に、スパースの特徴抽出器を使用して、それらの画素の精細化を効率的に生成する。
最後に、ゲートアンサンブラを利用して、これらのスパースの改良を初期粗い予測に適用する。
SparseRefineは、CNNやViTベースに関わらず、既存のセマンティックセグメンテーションモデルにシームレスに統合できる。
SparseRefineは、HRNet-W48、SegFormer-B5、Mask2Former-T/L、SegNeXt-Lに1.5倍から3.7倍のスピードアップを実現している。
我々の"dense+sparse"パラダイムは、効率的な高解像度ビジュアルコンピューティングの道を開く。
関連論文リスト
- LoopSparseGS: Loop Based Sparse-View Friendly Gaussian Splatting [18.682864169561498]
LoopSparseGSは、疎結合なビュー合成タスクのためのループベースの3DGSフレームワークである。
Sparse-Friended Smpling (SFS) 戦略を導入し,ガウス楕円体を過剰に処理し,画素誤差が大きくなった。
4つのデータセットの実験により、LoopSparseGSはスパース・インプット・ノベルビューの合成において既存の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-01T03:26:50Z) - InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds [91.77050739918037]
スパース画像からの新しいビュー合成(NVS)は3次元コンピュータビジョンにおいて大きく進歩している。
これはStructure-from-Motion (SfM) を用いたカメラパラメータの正確な初期推定に依存する
本研究では,スパースビュー画像から堅牢なNVSを向上するための,新規で効率的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-29T17:29:58Z) - Low-Resolution Self-Attention for Semantic Segmentation [96.81482872022237]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
アップサンプリングによる画素歪みに対処するために,グラフアテンションに基づくPixel Adapter Module (PAM)を提案する。
PAMは、各ピクセルが隣人と対話し、機能を更新することで、ローカルな構造情報を効果的にキャプチャする。
提案手法は,従来の認識精度を上回り,高品質な超解像を生成することを実証する。
論文 参考訳(メタデータ) (2023-09-16T08:12:12Z) - CUF: Continuous Upsampling Filters [25.584630142930123]
本稿では,画像処理における最も重要な操作の一つとして,アップサンプリングについて考察する。
本稿では、アップサンプリングカーネルをニューラルネットワークとしてパラメータ化することを提案する。
このパラメータ化により、競合する任意のスケールの超解像アーキテクチャと比較して40倍のパラメータ数の削減が得られる。
論文 参考訳(メタデータ) (2022-10-13T12:45:51Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
本稿では,インスタンスの性質に応じて適切な畳み込みカーネルを生成するデータ駆動型アプローチを提案する。
提案手法はScanetNetV2とS3DISの両方で有望な結果が得られる。
また、現在の最先端よりも推論速度を25%以上向上させる。
論文 参考訳(メタデータ) (2020-11-26T14:56:57Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
Cascaded Factorized Atrous Space Pyramid Pooling (CF-ASPP) と呼ばれる新しい効率的なモジュールについて紹介する。
これは畳み込みニューラルネットワーク(CNN)のための軽量なカスケード構造であり、コンテキスト情報を効率的に活用する。
我々は1枚のNivida Titan X (Maxwell) GPUカードでCityscapesテストセットの84fpsで68.4% mIoUを達成した。
論文 参考訳(メタデータ) (2020-03-09T03:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。