Artificial Neural Networks on Graded Vector Spaces
- URL: http://arxiv.org/abs/2407.19031v2
- Date: Sat, 10 May 2025 15:03:42 GMT
- Title: Artificial Neural Networks on Graded Vector Spaces
- Authors: Tony Shaska,
- Abstract summary: This paper presents a transformative framework for artificial neural networks over graded vector spaces.<n>We extend classical neural networks with graded neurons, layers, and activation functions that preserve structural integrity.<n>Case studies validate the framework's effectiveness, outperforming standard neural networks in tasks such as predicting invariants in weighted projective spaces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a transformative framework for artificial neural networks over graded vector spaces, tailored to model hierarchical and structured data in fields like algebraic geometry and physics. By exploiting the algebraic properties of graded vector spaces, where features carry distinct weights, we extend classical neural networks with graded neurons, layers, and activation functions that preserve structural integrity. Grounded in group actions, representation theory, and graded algebra, our approach combines theoretical rigor with practical utility. We introduce graded neural architectures, loss functions prioritizing graded components, and equivariant extensions adaptable to diverse gradings. Case studies validate the framework's effectiveness, outperforming standard neural networks in tasks such as predicting invariants in weighted projective spaces and modeling supersymmetric systems. This work establishes a new frontier in machine learning, merging mathematical sophistication with interdisciplinary applications. Future challenges, including computational scalability and finite field extensions, offer rich opportunities for advancing this paradigm.
Related papers
- Graded Transformers: A Symbolic-Geometric Approach to Structured Learning [0.0]
We introduce a novel class of sequence models that embed inductive biases through grading transformations on vector spaces.<n>The Graded Transformer holds transformative potential for hierarchical learning and neurosymbolic reasoning.<n>This work advances structured deep learning by fusing geometric and algebraic principles with attention mechanisms.
arXiv Detail & Related papers (2025-07-27T02:34:08Z) - Why Neural Network Can Discover Symbolic Structures with Gradient-based Training: An Algebraic and Geometric Foundation for Neurosymbolic Reasoning [73.18052192964349]
We develop a theoretical framework that explains how discrete symbolic structures can emerge naturally from continuous neural network training dynamics.<n>By lifting neural parameters to a measure space and modeling training as Wasserstein gradient flow, we show that under geometric constraints, the parameter measure $mu_t$ undergoes two concurrent phenomena.
arXiv Detail & Related papers (2025-06-26T22:40:30Z) - Graded Neural Networks [0.0]
This paper presents a novel framework for graded neural networks (GNNs) built over graded vector spaces.<n>Potential applications span machine learning and photonic systems, exemplified by high-speed laser-based implementations.
arXiv Detail & Related papers (2025-02-25T01:08:07Z) - A Mathematical Analysis of Neural Operator Behaviors [0.0]
This paper presents a rigorous framework for analyzing the behaviors of neural operators.
We focus on their stability, convergence, clustering dynamics, universality, and generalization error.
We aim to offer clear and unified guidance in a single setting for the future design of neural operator-based methods.
arXiv Detail & Related papers (2024-10-28T19:38:53Z) - Equivariant Neural Tangent Kernels [2.373992571236766]
We give explicit expressions for neural tangent kernels (NTKs) of group convolutional neural networks.
In numerical experiments, we demonstrate superior performance for equivariant NTKs over non-equivariant NTKs on a classification task for medical images.
arXiv Detail & Related papers (2024-06-10T17:43:13Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Dynamical systems' based neural networks [0.7874708385247353]
We build neural networks using a suitable, structure-preserving, numerical time-discretisation.
The structure of the neural network is then inferred from the properties of the ODE vector field.
We present two universal approximation results and demonstrate how to impose some particular properties on the neural networks.
arXiv Detail & Related papers (2022-10-05T16:30:35Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
We identify and construct an explicit set of neural network classifiers that achieve optimality.
In particular, we provide explicit activation functions that can be used to construct networks that achieve optimality.
Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
arXiv Detail & Related papers (2022-04-29T14:27:42Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible neural networks (INNs) are neural network architectures with invertibility by design.
Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning.
arXiv Detail & Related papers (2022-04-15T10:45:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
We study neural networks, a main type of neural network in use.
We prove that as the width of an optimized neural network tends to infinity, its predictive variance on the training set decreases to zero.
arXiv Detail & Related papers (2022-01-30T04:52:31Z) - Generalization capabilities of translationally equivariant neural
networks [0.0]
In this work, we focus on complex scalar field theory on a two-dimensional lattice and investigate the benefits of using group equivariant convolutional neural network architectures.
For a meaningful comparison, we conduct a systematic search for equivariant and non-equivariant neural network architectures and apply them to various regression and classification tasks.
We demonstrate that our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts.
arXiv Detail & Related papers (2021-03-26T18:53:36Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
We argue that building large, fast and efficient neural networks on neuromorphic architectures requires rethinking the algorithms to implement and train them.
Our framework applies to a very broad class of models, namely systems whose state or dynamics are described by variational equations.
arXiv Detail & Related papers (2021-03-18T02:12:48Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic neural networks (AlgNNs) are composed of a cascade of layers each one associated to and algebraic signal model.
We show how any architecture that uses a formal notion of convolution can be stable beyond particular choices of the shift operator.
arXiv Detail & Related papers (2020-10-22T09:10:16Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Deep Randomized Neural Networks [12.333836441649343]
Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed.
This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks.
arXiv Detail & Related papers (2020-02-27T17:57:58Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
In this work we focus on a particular class of neural networks, i.e. the residual neural networks.
We analyze steady states and sensitivity with respect to the parameters of the network, namely the weights and the bias.
A modification of the microscopic dynamics, inspired by residual neural networks, leads to a Fokker-Planck formulation of the network.
arXiv Detail & Related papers (2020-01-07T13:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.