A Fault Prognostic System for the Turbine Guide Bearings of a Hydropower Plant Using Long-Short Term Memory (LSTM)
- URL: http://arxiv.org/abs/2407.19040v1
- Date: Fri, 26 Jul 2024 18:45:42 GMT
- Title: A Fault Prognostic System for the Turbine Guide Bearings of a Hydropower Plant Using Long-Short Term Memory (LSTM)
- Authors: Yasir Saleem Afridi, Mian Ibad Ali Shah, Adnan Khan, Atia Kareem, Laiq Hasan,
- Abstract summary: The research is targeted to develop an artificially intelligent fault prognostics system for the turbine bearings of an HPP.
The proposed method utilizes the Long Short-Term Memory (LSTM) algorithm in developing the model.
The model demonstrates highly effective predictions of bearing vibration values, achieving a remarkably low RMSE.
- Score: 0.2796197251957245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hydroelectricity, being a renewable source of energy, globally fulfills the electricity demand. Hence, Hydropower Plants (HPPs) have always been in the limelight of research. The fast-paced technological advancement is enabling us to develop state-of-the-art power generation machines. This has not only resulted in improved turbine efficiency but has also increased the complexity of these systems. In lieu thereof, efficient Operation & Maintenance (O&M) of such intricate power generation systems has become a more challenging task. Therefore, there has been a shift from conventional reactive approaches to more intelligent predictive approaches in maintaining the HPPs. The research is therefore targeted to develop an artificially intelligent fault prognostics system for the turbine bearings of an HPP. The proposed method utilizes the Long Short-Term Memory (LSTM) algorithm in developing the model. Initially, the model is trained and tested with bearing vibration data from a test rig. Subsequently, it is further trained and tested with realistic bearing vibration data obtained from an HPP operating in Pakistan via the Supervisory Control and Data Acquisition (SCADA) system. The model demonstrates highly effective predictions of bearing vibration values, achieving a remarkably low RMSE.
Related papers
- AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems [44.99833362998488]
intermittent nature of photovoltaic (PV) solar energy leads to power losses of 10-70% and an average energy production decrease of 25%.
Current fault detection strategies are costly and often yield unreliable results due to complex data signal profiles.
This research presents a computational model using the PVlib library in Python, incorporating a dynamic loss quantification algorithm.
arXiv Detail & Related papers (2024-08-19T23:52:06Z) - AI-Driven approach for sustainable extraction of earth's subsurface renewable energy while minimizing seismic activity [44.99833362998488]
Injection of fluids into the Earth's crust can induce or trigger earthquakes.
We propose a new approach based on Reinforcement Learning for the control of human-induced seismicity.
We show that the reinforcement learning algorithm can interact efficiently with a robust controller.
arXiv Detail & Related papers (2024-08-07T10:06:04Z) - Comprehensive Forecasting-Based Analysis of Hybrid and Stacked Stateful/ Stateless Models [0.0]
Wind speed is a powerful source of renewable energy, which can be used as an alternative to the non-renewable resources for production of electricity.
In this paper, we discuss four deep recurrent neural networks viz. Stacked Stateless LSTM, Stacked Stateless GRU, Stacked Stateful LSTM and Statcked Stateful GRU.
The paper does a comprehensive analysis of the performance of the models used describing their architectures and how efficiently they elicit the results with the help of RMSE values.
arXiv Detail & Related papers (2024-04-30T07:18:10Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - EVE: Environmental Adaptive Neural Network Models for Low-power Energy
Harvesting System [8.16411986220709]
Energy harvesting technology that harvests energy from ambient environment is a promising alternative to batteries for powering those devices.
This paper proposes EVE, an automated machine learning framework to search for desired multi-models with shared weights for energy harvesting IoT devices.
Experimental results show that the neural networks models generated by EVE is on average 2.5X faster than the baseline models without pruning and shared weights.
arXiv Detail & Related papers (2022-07-14T20:53:46Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
arXiv Detail & Related papers (2022-07-06T11:02:23Z) - Automated Few-Shot Time Series Forecasting based on Bi-level Programming [5.760976250387322]
This paper develops a BiLO-Auto-TSF/ML framework that automates the optimal design of a few-shot learning pipeline from a bi-level programming perspective.
Comprehensive experiments fully demonstrate the effectiveness of our proposed BiLO-Auto-TSF/ML framework.
arXiv Detail & Related papers (2022-03-07T12:15:14Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power
Output [6.411829871947649]
We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden.
With the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm.
We show that our approach outperforms its counterparts.
arXiv Detail & Related papers (2020-04-02T04:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.