Super Resolution for Renewable Energy Resource Data With Wind From Reanalysis Data (Sup3rWind) and Application to Ukraine
- URL: http://arxiv.org/abs/2407.19086v1
- Date: Fri, 26 Jul 2024 21:07:17 GMT
- Title: Super Resolution for Renewable Energy Resource Data With Wind From Reanalysis Data (Sup3rWind) and Application to Ukraine
- Authors: Brandon N. Benton, Grant Buster, Pavlo Pinchuk, Andrew Glaws, Ryan N. King, Galen Maclaurin, Ilya Chernyakhovskiy,
- Abstract summary: There is an expanding global need for historically accurate high-resolution wind data.
In this work, we present a novel deep learning-based downscaling method, using adversarial networks.
We achieve results comparable in historical accuracy and variability to conventional downscaling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With an increasing share of the electricity grid relying on wind to provide generating capacity and energy, there is an expanding global need for historically accurate high-resolution wind data. Conventional downscaling methods for generating these data have a high computational burden and require extensive tuning for historical accuracy. In this work, we present a novel deep learning-based spatiotemporal downscaling method, using generative adversarial networks (GANs), for generating historically accurate high-resolution wind resource data from the European Centre for Medium-Range Weather Forecasting Reanalysis version 5 data (ERA5). We achieve results comparable in historical accuracy and spatiotemporal variability to conventional downscaling by training a GAN model with ERA5 low-resolution input and high-resolution targets from the Wind Integration National Dataset, while reducing computational costs over dynamical downscaling by two orders of magnitude. Spatiotemporal cross-validation shows low error and high correlations with observations and excellent agreement with holdout data across distributions of physical metrics. We apply this approach to downscale 30-km hourly ERA5 data to 2-km 5-minute wind data for January 2000 through December 2023 at multiple hub heights over Eastern Europe. Uncertainty is estimated over the period with observational data by additionally downscaling the members of the European Centre for Medium-Range Weather Forecasting Ensemble of Data Assimilations. Comparisons against observational data from the Meteorological Assimilation Data Ingest System and multiple wind farms show comparable performance to the CONUS validation. This 24-year data record is the first member of the super resolution for renewable energy resource data with wind from reanalysis data dataset (Sup3rWind).
Related papers
- DUNE: A Machine Learning Deep UNet++ based Ensemble Approach to Monthly, Seasonal and Annual Climate Forecasting [0.0]
A novel Deep UNet++-based Ensemble (DUNE) neural architecture is introduced.
It produces the first AI-based global monthly, seasonal, or annual mean forecast of 2-meter temperatures (T2m) and sea surface temperatures (SST)
These forecasts outperform persistence, climatology, and multiple linear regression for all domains.
arXiv Detail & Related papers (2024-08-12T16:22:30Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Wind speed super-resolution and validation: from ERA5 to CERRA via
diffusion models [0.0]
This paper introduces a novel method using diffusion models to approximate CERRA downscaling in a data-driven manner.
We focus on wind speed around Italy, our model, trained on existing CERRA data, shows promising results.
arXiv Detail & Related papers (2024-01-27T17:43:08Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Data Assimilation using ERA5, ASOS, and the U-STN model for Weather
Forecasting over the UK [3.7601811445702222]
We harnessed the UK's local ERA5 850 hPa temperature data and refined the U-STN12 global weather forecasting model.
From the ASOS network, we sourced T2m data, representing ground observations across the UK.
Our insights reveal that while global forecast models can adapt to specific regions, incorporating atmospheric data in DA significantly bolsters model accuracy.
arXiv Detail & Related papers (2024-01-15T11:21:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A Deep Learning Method for Real-time Bias Correction of Wind Field
Forecasts in the Western North Pacific [24.287588853356972]
Real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021.
Wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively.
arXiv Detail & Related papers (2022-12-29T02:58:12Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.