RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language
Models
- URL: http://arxiv.org/abs/2310.10221v2
- Date: Fri, 23 Feb 2024 15:18:31 GMT
- Title: RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language
Models
- Authors: Zijun Long and George Killick and Richard McCreadie and Gerardo Aragon
Camarasa
- Abstract summary: Multimodal Large Language Models (MLLMs) have emerged as novel backbones for various downstream tasks.
We introduce the RoboLLM framework, equipped with a BEiT-3 backbone, to address all visual perception tasks in the ARMBench challenge.
- Score: 4.4173427917548524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Robotic vision applications often necessitate a wide range of visual
perception tasks, such as object detection, segmentation, and identification.
While there have been substantial advances in these individual tasks,
integrating specialized models into a unified vision pipeline presents
significant engineering challenges and costs. Recently, Multimodal Large
Language Models (MLLMs) have emerged as novel backbones for various downstream
tasks. We argue that leveraging the pre-training capabilities of MLLMs enables
the creation of a simplified framework, thus mitigating the need for
task-specific encoders. Specifically, the large-scale pretrained knowledge in
MLLMs allows for easier fine-tuning to downstream robotic vision tasks and
yields superior performance. We introduce the RoboLLM framework, equipped with
a BEiT-3 backbone, to address all visual perception tasks in the ARMBench
challenge-a large-scale robotic manipulation dataset about real-world warehouse
scenarios. RoboLLM not only outperforms existing baselines but also
substantially reduces the engineering burden associated with model selection
and tuning. The source code is publicly available at
https://github.com/longkukuhi/armbench.
Related papers
- Solving Robotics Problems in Zero-Shot with Vision-Language Models [0.0]
We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime.
In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description.
Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner.
arXiv Detail & Related papers (2024-07-26T21:18:57Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - MMRo: Are Multimodal LLMs Eligible as the Brain for In-Home Robotics? [33.573056018368504]
This study introduces the first benchmark for evaluating Multimodal LLM for Robotic (MMRo) benchmark.
We identify four essential capabilities perception, task planning, visual reasoning, and safety measurement that MLLMs must possess to qualify as the robot's central processing unit.
Our findings indicate that no single model excels in all areas, suggesting that current MLLMs are not yet trustworthy enough to serve as the cognitive core for robots.
arXiv Detail & Related papers (2024-06-28T07:09:06Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
We introduce LLARVA, a model trained with a novel instruction tuning method to unify a range of robotic learning tasks, scenarios, and environments.
We generate 8.5M image-visual trace pairs from the Open X-Embodiment dataset in order to pre-train our model.
Experiments yield strong performance, demonstrating that LLARVA performs well compared to several contemporary baselines.
arXiv Detail & Related papers (2024-06-17T17:55:29Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives [46.57277568357048]
Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains.
For embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception.
We propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.
arXiv Detail & Related papers (2024-01-09T03:22:16Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
We design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters.
This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks.
It has powerful visual capabilities and can be a good alternative to the ViT-22B.
arXiv Detail & Related papers (2023-12-21T18:59:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
We introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning.
ViLa directly integrates perceptual data into its reasoning and planning process.
Our evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners.
arXiv Detail & Related papers (2023-11-29T17:46:25Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.