Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs
- URL: http://arxiv.org/abs/2407.19094v6
- Date: Tue, 04 Feb 2025 00:18:00 GMT
- Title: Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs
- Authors: Zidan Wang, Rui Shen, Bradly Stadie,
- Abstract summary: Wonderful Team is a framework for executing high-level robotic planning in a zero-shot regime.
We show that Wonderful Team's performance on real-world semantic and physical planning tasks often exceeds methods that rely on separate vision systems.
- Score: 0.0
- License:
- Abstract: We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework for executing high-level robotic planning in a zero-shot regime. In our context, zero-shot high-level planning means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description, and the VLLM outputs the sequence of actions necessary for the robot to complete the task. Unlike previous methods for high-level visual planning for robotic manipulation, our method uses VLLMs for the entire planning process, enabling a more tightly integrated loop between perception, control, and planning. As a result, Wonderful Team's performance on real-world semantic and physical planning tasks often exceeds methods that rely on separate vision systems. For example, we see an average 40% success rate improvement on VimaBench over prior methods such as NLaP, an average 30% improvement over Trajectory Generators on tasks from the Trajectory Generator paper, including drawing and wiping a plate, and an average 70% improvement over Trajectory Generators on a new set of semantic reasoning tasks including environment rearrangement with implicit linguistic constraints. We hope these results highlight the rapid improvements of VLLMs in the past year, and motivate the community to consider VLLMs as an option for some high-level robotic planning problems in the future.
Related papers
- Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.
It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.
Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
Large Language Model-based agents have garnered significant attention and are becoming increasingly popular.
Planning ability is a crucial component of an LLM-based agent, which generally entails achieving a desired goal from an initial state.
Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.
First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.
We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability.
This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios.
arXiv Detail & Related papers (2024-01-15T18:01:59Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
We introduce EgoPlan-Bench, a benchmark to evaluate the planning abilities of MLLMs in real-world scenarios.
We show that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning.
We also present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench.
arXiv Detail & Related papers (2023-12-11T03:35:58Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
We introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning.
ViLa directly integrates perceptual data into its reasoning and planning process.
Our evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners.
arXiv Detail & Related papers (2023-11-29T17:46:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.