論文の概要: Accuracy-Privacy Trade-off in the Mitigation of Membership Inference Attack in Federated Learning
- arxiv url: http://arxiv.org/abs/2407.19119v1
- Date: Fri, 26 Jul 2024 22:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:40:49.325687
- Title: Accuracy-Privacy Trade-off in the Mitigation of Membership Inference Attack in Federated Learning
- Title(参考訳): フェデレートラーニングにおける会員推測攻撃の軽減における精度・職業トレードオフ
- Authors: Sayyed Farid Ahamed, Soumya Banerjee, Sandip Roy, Devin Quinn, Marc Vucovich, Kevin Choi, Abdul Rahman, Alison Hu, Edward Bowen, Sachin Shetty,
- Abstract要約: フェデレーション・ラーニング(FL)は、機械学習において顕著な方法として現れ、複数のクライアントがトレーニングデータをプライベートに保ちながら、協力してモデルを構築することを可能にすることで、プライバシ保護を強調している。
プライバシに重点を置いているにもかかわらず、FLモデルは、メンバーシップ推論攻撃(MIA)など、様々な攻撃を受けやすい。
- 参考スコア(独自算出の注目度): 4.152322723065285
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the last few years, federated learning (FL) has emerged as a prominent method in machine learning, emphasizing privacy preservation by allowing multiple clients to collaboratively build a model while keeping their training data private. Despite this focus on privacy, FL models are susceptible to various attacks, including membership inference attacks (MIAs), posing a serious threat to data confidentiality. In a recent study, Rezaei \textit{et al.} revealed the existence of an accuracy-privacy trade-off in deep ensembles and proposed a few fusion strategies to overcome it. In this paper, we aim to explore the relationship between deep ensembles and FL. Specifically, we investigate whether confidence-based metrics derived from deep ensembles apply to FL and whether there is a trade-off between accuracy and privacy in FL with respect to MIA. Empirical investigations illustrate a lack of a non-monotonic correlation between the number of clients and the accuracy-privacy trade-off. By experimenting with different numbers of federated clients, datasets, and confidence-metric-based fusion strategies, we identify and analytically justify the clear existence of the accuracy-privacy trade-off.
- Abstract(参考訳): ここ数年、フェデレートドラーニング(FL)は機械学習において顕著な方法として現れ、複数のクライアントがトレーニングデータをプライベートに保ちながら、協力的にモデルを構築することによって、プライバシ保護を強調してきた。
プライバシに重点を置いているにもかかわらず、FLモデルは、メンバシップ推論攻撃(MIA)など、さまざまな攻撃を受けやすいため、データの機密性に対する深刻な脅威がある。
最近の研究で、Rezaei \textit{et al } は深層アンサンブルにおける精度の高いプライバシトレードオフの存在を明らかにし、それを克服するためのいくつかの融合戦略を提案した。
本稿では,深層アンサンブルとFLの関係について検討する。
具体的には、深層アンサンブルから派生した信頼度に基づくメトリクスがFLに適用されるかどうか、およびMIAに関してFLの精度とプライバシのトレードオフがあるかどうかを検討する。
実証的な調査では、クライアント数と精度とプライバシのトレードオフとの間には、モノトニックな相関が欠如していることが示されている。
各種のフェデレーションクライアント、データセット、信頼度基準に基づく融合戦略を実験することにより、精度プライバシトレードオフの明確な存在を特定し、分析的に正当化する。
関連論文リスト
- Privacy Attack in Federated Learning is Not Easy: An Experimental Study [5.065947993017158]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のために提案される分散機械学習のパラダイムである。
近年の研究では、FLはプライバシー保護を完全に保証できないことが示されている。
プライバシ攻撃FLアルゴリズムが現実的なフェデレーション環境で有効かどうかは不明だ。
論文 参考訳(メタデータ) (2024-09-28T10:06:34Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Active Membership Inference Attack under Local Differential Privacy in
Federated Learning [18.017082794703555]
フェデレートラーニング(FL)は元々、データプライバシ保護を備えたクライアント間での協調学習のフレームワークとして見なされていた。
本稿では,FLにおける不適切なサーバによって実行される新たなアクティブメンバシップ推論(AMI)攻撃を提案する。
論文 参考訳(メタデータ) (2023-02-24T15:21:39Z) - On Privacy and Personalization in Cross-Silo Federated Learning [39.031422430404405]
本研究では,クロスサイロ学習(FL)における差分プライバシーの適用について考察する。
平均正規化マルチタスク学習(MR-MTL)がクロスサイロFLの強力なベースラインであることを示す。
平均推定問題に対するMR-MTLの理論的評価とともに,競合する手法の徹底的な実証研究を行った。
論文 参考訳(メタデータ) (2022-06-16T03:26:48Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Understanding the Interplay between Privacy and Robustness in Federated
Learning [15.673448030003788]
フェデレートラーニング(FL)は、プライバシー保護機械学習の有望なパラダイムとして浮上している。
最近の作業では、FLのいくつかのプライバシとロバストネスの弱点が強調されている。
LDPがFLの敵対的堅牢性にどのように影響するかは、まだ不明である。
論文 参考訳(メタデータ) (2021-06-13T16:01:35Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。