Multi-Expert Adaptive Selection: Task-Balancing for All-in-One Image Restoration
- URL: http://arxiv.org/abs/2407.19139v1
- Date: Sat, 27 Jul 2024 01:13:07 GMT
- Title: Multi-Expert Adaptive Selection: Task-Balancing for All-in-One Image Restoration
- Authors: Xiaoyan Yu, Shen Zhou, Huafeng Li, Liehuang Zhu,
- Abstract summary: We propose a multi-expert adaptive selection mechanism for multi-task image restoration.
The scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task.
Experimental results demonstrate that our proposed method is both effective and superior to existing approaches.
- Score: 20.04384107349706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration.
Related papers
- MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training [62.843316348659165]
Deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences.
We propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals to train models to recognize and match fundamental structures across images.
Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks.
arXiv Detail & Related papers (2025-01-13T18:37:36Z) - SpotActor: Training-Free Layout-Controlled Consistent Image Generation [43.2870588035256]
We present a new formalization of dual energy guidance with optimization in a dual semantic-latent space.
We propose a training-free pipeline, SpotActor, which features a layout-conditioned backward update stage and a consistent forward sampling stage.
The results prove that SpotActor fulfills the expectations of this task and showcases the potential for practical applications.
arXiv Detail & Related papers (2024-09-07T11:52:48Z) - Unity in Diversity: Multi-expert Knowledge Confrontation and Collaboration for Generalizable Vehicle Re-identification [60.20318058777603]
Generalizable vehicle re-identification (ReID) seeks to develop models that can adapt to unknown target domains without the need for fine-tuning or retraining.
Previous works have mainly focused on extracting domain-invariant features by aligning data distributions between source domains.
We propose a two-stage Multi-expert Knowledge Confrontation and Collaboration (MiKeCoCo) method to solve this unique problem.
arXiv Detail & Related papers (2024-07-10T04:06:39Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
We introduce a novel concept positing that intricate image degradation can be represented in terms of elementary degradation.
We propose the Unified-Width Adaptive Dynamic Network (U-WADN), consisting of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)
The proposed U-WADN achieves better performance while simultaneously reducing up to 32.3% of FLOPs and providing approximately 15.7% real-time acceleration.
arXiv Detail & Related papers (2024-01-24T04:25:12Z) - Unifying Image Processing as Visual Prompting Question Answering [62.84955983910612]
Image processing is a fundamental task in computer vision, which aims at enhancing image quality and extracting essential features for subsequent vision applications.
Traditionally, task-specific models are developed for individual tasks and designing such models requires distinct expertise.
We propose a universal model for general image processing that covers image restoration, image enhancement, image feature extraction tasks.
arXiv Detail & Related papers (2023-10-16T15:32:57Z) - Cones 2: Customizable Image Synthesis with Multiple Subjects [50.54010141032032]
We study how to efficiently represent a particular subject as well as how to appropriately compose different subjects.
By rectifying the activations in the cross-attention map, the layout appoints and separates the location of different subjects in the image.
arXiv Detail & Related papers (2023-05-30T18:00:06Z) - Unified Representation Learning for Efficient Medical Image Analysis [0.623075162128532]
We propose a multi-task training approach for medical image analysis using a unified modality-specific feature representation (UMS-Rep)
Our results demonstrate that the proposed approach reduces the overall demand for computational resources and improves target task generalization and performance.
arXiv Detail & Related papers (2020-06-19T16:52:16Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.