Few-Shot Medical Image Segmentation with Large Kernel Attention
- URL: http://arxiv.org/abs/2407.19148v1
- Date: Sat, 27 Jul 2024 02:28:30 GMT
- Title: Few-Shot Medical Image Segmentation with Large Kernel Attention
- Authors: Xiaoxiao Wu, Xiaowei Chen, Zhenguo Gao, Shulei Qu, Yuanyuan Qiu,
- Abstract summary: We propose a few-shot medical segmentation model that acquire comprehensive feature representation capabilities.
Our model comprises four key modules: a dual-path feature extractor, an attention module, an adaptive prototype prediction module, and a multi-scale prediction fusion module.
The results demonstrate that our method achieves state-of-the-art performance.
- Score: 5.630842216128902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation has witnessed significant advancements with the emergence of deep learning. However, the reliance of most neural network models on a substantial amount of annotated data remains a challenge for medical image segmentation. To address this issue, few-shot segmentation methods based on meta-learning have been employed. Presently, the methods primarily focus on aligning the support set and query set to enhance performance, but this approach hinders further improvement of the model's effectiveness. In this paper, our objective is to propose a few-shot medical segmentation model that acquire comprehensive feature representation capabilities, which will boost segmentation accuracy by capturing both local and long-range features. To achieve this, we introduce a plug-and-play attention module that dynamically enhances both query and support features, thereby improving the representativeness of the extracted features. Our model comprises four key modules: a dual-path feature extractor, an attention module, an adaptive prototype prediction module, and a multi-scale prediction fusion module. Specifically, the dual-path feature extractor acquires multi-scale features by obtaining features of 32{\times}32 size and 64{\times}64 size. The attention module follows the feature extractor and captures local and long-range information. The adaptive prototype prediction module automatically adjusts the anomaly score threshold to predict prototypes, while the multi-scale fusion prediction module integrates prediction masks of various scales to produce the final segmentation result. We conducted experiments on publicly available MRI datasets, namely CHAOS and CMR, and compared our method with other advanced techniques. The results demonstrate that our method achieves state-of-the-art performance.
Related papers
- Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Tuning Pre-trained Model via Moment Probing [62.445281364055795]
We propose a novel Moment Probing (MP) method to explore the potential of LP.
MP performs a linear classification head based on the mean of final features.
Our MP significantly outperforms LP and is competitive with counterparts at less training cost.
arXiv Detail & Related papers (2023-07-21T04:15:02Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - A Self-Distillation Embedded Supervised Affinity Attention Model for
Few-Shot Segmentation [18.417460995287257]
We propose self-distillation embedded supervised affinity attention model to improve the performance of few-shot segmentation task.
Our model significantly improves the performance compared to existing methods.
On COCO-20i dataset, we achieve new state-of-the-art results.
arXiv Detail & Related papers (2021-08-14T18:16:12Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
Multi-dimensional attention segmentation model with cascade multi-scale convolution is proposed to predict accurate segmentation for small objects in medical images.
The proposed method is evaluated on three datasets: KiTS19, Pancreas CT of Decathlon-10, and MICCAI 2018 LiTS Challenge.
arXiv Detail & Related papers (2020-11-15T13:54:22Z) - Multi-Person Pose Estimation with Enhanced Feature Aggregation and
Selection [33.15192824888279]
We propose a novel Enhanced Feature Aggregation and Selection network (EFASNet) for multi-person 2D human pose estimation.
Our method can well handle crowded, cluttered and occluded scenes.
Comprehensive experiments demonstrate that the proposed approach outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2020-03-20T08:33:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.