論文の概要: RAVSS: Robust Audio-Visual Speech Separation in Multi-Speaker Scenarios with Missing Visual Cues
- arxiv url: http://arxiv.org/abs/2407.19224v2
- Date: Tue, 30 Jul 2024 02:27:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 12:29:44.483079
- Title: RAVSS: Robust Audio-Visual Speech Separation in Multi-Speaker Scenarios with Missing Visual Cues
- Title(参考訳): RAVSS:多話者シナリオにおけるロバスト・オーディオ・ビジュアル音声分離
- Authors: Tianrui Pan, Jie Liu, Bohan Wang, Jie Tang, Gangshan Wu,
- Abstract要約: 本稿では,複数話者の同時分離を容易にするマルチ話者分離フレームワークを提案する。
VoxCeleb2 と LRS3 のデータセットによる実験結果から,2, 3, 4, 5 話者を分離した場合に,本手法が最先端の性能を達成することが示された。
- 参考スコア(独自算出の注目度): 45.095482324156606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While existing Audio-Visual Speech Separation (AVSS) methods primarily concentrate on the audio-visual fusion strategy for two-speaker separation, they demonstrate a severe performance drop in the multi-speaker separation scenarios. Typically, AVSS methods employ guiding videos to sequentially isolate individual speakers from the given audio mixture, resulting in notable missing and noisy parts across various segments of the separated speech. In this study, we propose a simultaneous multi-speaker separation framework that can facilitate the concurrent separation of multiple speakers within a singular process. We introduce speaker-wise interactions to establish distinctions and correlations among speakers. Experimental results on the VoxCeleb2 and LRS3 datasets demonstrate that our method achieves state-of-the-art performance in separating mixtures with 2, 3, 4, and 5 speakers, respectively. Additionally, our model can utilize speakers with complete audio-visual information to mitigate other visual-deficient speakers, thereby enhancing its resilience to missing visual cues. We also conduct experiments where visual information for specific speakers is entirely absent or visual frames are partially missing. The results demonstrate that our model consistently outperforms others, exhibiting the smallest performance drop across all settings involving 2, 3, 4, and 5 speakers.
- Abstract(参考訳): 既存のAVSS(Audio-Visual Speech separation)手法は、主に2話者分離のための音声-視覚融合戦略に重点を置いているが、それらはマルチ話者分離シナリオにおいて深刻な性能低下を示す。
典型的には、AVSS法では、個々の話者を所定のオーディオミックスから順次分離するためにガイドビデオを使用する。
本研究では,単一プロセス内で複数の話者の同時分離を容易にする,同時多話者分離フレームワークを提案する。
話者間の区別と相関を確立するために、話者と話者の相互作用を導入する。
VoxCeleb2 と LRS3 のデータセットによる実験結果から,2, 3, 4, 5 話者を分離した場合に,本手法が最先端の性能を達成することが示された。
さらに,本モデルでは,音声・視覚情報を完全に活用することで,他の視覚障害話者を軽減し,視覚的手がかりの欠如に対するレジリエンスを高めることができる。
また、特定の話者の視覚情報が完全に欠落している場合や、視覚的フレームが部分的に欠落している場合も検討する。
その結果,2, 3, 4, 5 話者を含むすべての設定において,我々のモデルが最小性能の低下を示した。
関連論文リスト
- Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
双方向ブリッジを用いた双方向オーディオ・ビジュアルデコーダ(BAVD)を提案する。
この相互作用はモダリティの不均衡を狭め、統合されたオーディオ視覚表現のより効果的な学習を促進する。
また,BAVDの微粒化誘導として,音声・視覚的フレームワイド同期のための戦略を提案する。
論文 参考訳(メタデータ) (2024-02-04T03:02:35Z) - Multi-Dimensional and Multi-Scale Modeling for Speech Separation
Optimized by Discriminative Learning [9.84949849886926]
音声分離のためのSE変換器とISCIT(Intra-SE-Conformer and Inter-Transformer)
新しいネットワークSE-Conformerは、複数の次元とスケールでオーディオシーケンスをモデル化できる。
論文 参考訳(メタデータ) (2023-03-07T08:53:20Z) - Late Audio-Visual Fusion for In-The-Wild Speaker Diarization [33.0046568984949]
本稿では,後期融合による音声のみと視覚中心のサブシステムを組み合わせた音声視覚ダイアリゼーションモデルを提案する。
オーディオでは,提案手法を用いてシミュレーションされたプロキシデータセットのレシピをトレーニングした場合,アトラクタベースのエンドツーエンドシステム(EEND-EDA)が極めてよく動作することを示す。
また、学習中にデコードに注意を払い、話者認識損失を減らし、より多くの話者を処理するEEND-EDA++の改良版も提案する。
論文 参考訳(メタデータ) (2022-11-02T17:20:42Z) - VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency [111.55430893354769]
ビデオでは、同時の背景音や他の人間のスピーカーにもかかわらず、顔に関連するスピーチを抽出することを目的としています。
本手法は,非ラベル映像から音声-視覚音声分離とクロスモーダル話者埋め込みを共同で学習する。
音声-視覚音声分離と強化のための5つのベンチマークデータセットで最新の結果が得られます。
論文 参考訳(メタデータ) (2021-01-08T18:25:24Z) - Audio-visual Speech Separation with Adversarially Disentangled Visual
Representation [23.38624506211003]
音声分離は、複数の同時話者による音声の混合から個々の音声を分離することを目的としている。
本モデルでは,顔検出器を用いて現場の話者数を検出し,視覚情報を用いて順列化問題を回避する。
提案モデルは,最先端のオーディオのみのモデルと3つのオーディオ視覚モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-11-29T10:48:42Z) - FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and
Fusing Fine-Grained Voice Fragments With Attention [66.77490220410249]
本稿では、Wav2Vec 2.0から、音源話者からの発声の潜在音声構造を求めるFragmentVCを提案する。
FragmentVCは、ターゲット話者発話からきめ細かい音声断片を抽出し、所望の発話に融合することができる。
提案手法は, コンテンツと話者情報との絡み合いを考慮せずに, 再構成損失を学習する。
論文 参考訳(メタデータ) (2020-10-27T09:21:03Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z) - Voice Separation with an Unknown Number of Multiple Speakers [113.91855071999298]
本稿では,複数の音声が同時に発声する混合音声系列を分離する手法を提案する。
新たな手法では、複数の処理ステップで音声を分離するように訓練されたゲートニューラルネットワークを使用し、各出力チャネルに固定された話者を維持する。
論文 参考訳(メタデータ) (2020-02-29T20:02:54Z) - Self-supervised learning for audio-visual speaker diarization [33.87232473483064]
本稿では,大規模ラベリングを伴わない話者ダイアリゼーションの問題に対処する,自己教師型音声-ビデオ同期学習手法を提案する。
実世界の人間とコンピュータのインタラクションシステムでテストし、その結果、最良のモデルでは、ダイアリゼーション誤差率の低減とともに、8%F1スコアが顕著に向上することを示した。
論文 参考訳(メタデータ) (2020-02-13T02:36:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。