Symmetrical Joint Learning Support-query Prototypes for Few-shot Segmentation
- URL: http://arxiv.org/abs/2407.19306v1
- Date: Sat, 27 Jul 2024 17:37:56 GMT
- Title: Symmetrical Joint Learning Support-query Prototypes for Few-shot Segmentation
- Authors: Qun Li, Baoquan Sun, Fu Xiao, Yonggang Qi, Bir Bhanu,
- Abstract summary: We propose Sym-Net, a novel framework for Few-Shot (FSS) that addresses the critical issue of intra-class variation.
We jointly learn both query and support prototypes in a symmetrical manner, ensuring that the learning process does not favor one set (support or query) over the other.
Experimental results show that the proposed Sym-Net outperforms state-of-the-art models.
- Score: 33.33249452130038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Sym-Net, a novel framework for Few-Shot Segmentation (FSS) that addresses the critical issue of intra-class variation by jointly learning both query and support prototypes in a symmetrical manner. Unlike previous methods that generate query prototypes solely by matching query features to support prototypes, which is a form of bias learning towards the few-shot support samples, Sym-Net leverages a balanced symmetrical learning approach for both query and support prototypes, ensuring that the learning process does not favor one set (support or query) over the other. One of main modules of Sym-Net is the visual-text alignment-based prototype aggregation module, which is not just query-guided prototype refinement, it is a jointly learning from both support and query samples, which makes the model beneficial for handling intra-class discrepancies and allows it to generalize better to new, unseen classes. Specifically, a parameter-free prior mask generation module is designed to accurately localize both local and global regions of the query object by using sliding windows of different sizes and a self-activation kernel to suppress incorrect background matches. Additionally, to address the information loss caused by spatial pooling during prototype learning, a top-down hyper-correlation module is integrated to capture multi-scale spatial relationships between support and query images. This approach is further jointly optimized by implementing a co-optimized hard triplet mining strategy. Experimental results show that the proposed Sym-Net outperforms state-of-the-art models, which demonstrates that jointly learning support-query prototypes in a symmetrical manner for FSS offers a promising direction to enhance segmentation performance with limited annotated data.
Related papers
- Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot
Classification [23.82751179819225]
We develop a novel Adaptive Parametric Prototype Learning (APPL) method under the meta-learning convention for cross-domain few-shot classification.
APPL yields superior performance than many state-of-the-art cross-domain few-shot learning methods.
arXiv Detail & Related papers (2023-09-04T03:58:50Z) - Dual Adaptive Representation Alignment for Cross-domain Few-shot
Learning [58.837146720228226]
Few-shot learning aims to recognize novel queries with limited support samples by learning from base knowledge.
Recent progress in this setting assumes that the base knowledge and novel query samples are distributed in the same domains.
We propose to address the cross-domain few-shot learning problem where only extremely few samples are available in target domains.
arXiv Detail & Related papers (2023-06-18T09:52:16Z) - A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition [24.916377682689955]
Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances.
We propose a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER.
Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance.
arXiv Detail & Related papers (2023-02-27T09:20:00Z) - Self-Support Few-Shot Semantic Segmentation [72.43667576285445]
We propose a novel self-support matching strategy, which uses query prototypes to match query features.
We also propose an adaptive self-support background prototype generation module and self-support loss to further facilitate the self-support matching procedure.
Our self-support network substantially improves the prototype quality, benefits more improvement from stronger backbones and more supports, and achieves SOTA on multiple datasets.
arXiv Detail & Related papers (2022-07-23T16:28:07Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.