論文の概要: Deep Learning Based Crime Prediction Models: Experiments and Analysis
- arxiv url: http://arxiv.org/abs/2407.19324v1
- Date: Sat, 27 Jul 2024 19:11:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:51:52.274646
- Title: Deep Learning Based Crime Prediction Models: Experiments and Analysis
- Title(参考訳): 深層学習に基づく犯罪予測モデル:実験と分析
- Authors: Rittik Basak Utsha, Muhtasim Noor Alif, Yeasir Rayhan, Tanzima Hashem, Mohammad Eunus Ali,
- Abstract要約: 犯罪予測は、都市住民の安全を確保することの重要性から、広く研究されている研究課題である。
ディープラーニングに基づく犯罪予測モデルは、犯罪データの潜伏した特徴をキャプチャするために複雑なアーキテクチャを使用する。
我々は、最先端のディープラーニングに基づく犯罪予測モデルについて、総合的な実験的評価を行う。
- 参考スコア(独自算出の注目度): 1.4214002697449326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crime prediction is a widely studied research problem due to its importance in ensuring safety of city dwellers. Starting from statistical and classical machine learning based crime prediction methods, in recent years researchers have focused on exploiting deep learning based models for crime prediction. Deep learning based crime prediction models use complex architectures to capture the latent features in the crime data, and outperform the statistical and classical machine learning based crime prediction methods. However, there is a significant research gap in existing research on the applicability of different models in different real-life scenarios as no longitudinal study exists comparing all these approaches in a unified setting. In this paper, we conduct a comprehensive experimental evaluation of all major state-of-the-art deep learning based crime prediction models. Our evaluation provides several key insights on the pros and cons of these models, which enables us to select the most suitable models for different application scenarios. Based on the findings, we further recommend certain design practices that should be taken into account while building future deep learning based crime prediction models.
- Abstract(参考訳): 犯罪予測は、都市住民の安全を確保することの重要性から、広く研究されている研究課題である。
近年,統計的・古典的な機械学習に基づく犯罪予測手法から始められた研究は,犯罪予測に深層学習に基づくモデルを活用することに重点を置いている。
ディープラーニングベースの犯罪予測モデルは、複雑なアーキテクチャを使用して犯罪データの潜伏した特徴を捉え、統計的および古典的な機械学習ベースの犯罪予測方法より優れている。
しかし、異なる実生活シナリオにおける異なるモデルの適用性に関する既存の研究において、これらすべてのアプローチを統一された環境で比較する縦断的研究は存在しないため、大きな研究ギャップがある。
本稿では,最先端の深層学習に基づく犯罪予測モデルについて,総合的な実験的評価を行う。
我々の評価は、これらのモデルの長所と短所についていくつかの重要な洞察を与え、異なるアプリケーションシナリオに対して最も適切なモデルを選択することができます。
この結果に基づき,今後の深層学習に基づく犯罪予測モデルを構築しながら考慮すべき設計プラクティスをさらに推奨する。
関連論文リスト
- Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Crime Prediction Using Machine Learning and Deep Learning: A Systematic
Review and Future Directions [2.624902795082451]
本稿では,犯罪予測に応用された各種機械学習および深層学習アルゴリズムについて,150以上の論文について検討する。
この研究は、研究者による犯罪予測に使われるデータセットへのアクセスを提供する。
本稿では,犯罪予測の精度を高めるための潜在的なギャップと今後の方向性を明らかにする。
論文 参考訳(メタデータ) (2023-03-28T21:07:42Z) - Stability of clinical prediction models developed using statistical or
machine learning methods [0.5482532589225552]
臨床予測モデルは、複数の予測器の値に基づいて、個人の特定の健康結果のリスクを推定する。
多くのモデルは、モデルとその予測(推定リスク)の不安定性につながる小さなデータセットを使用して開発されている。
モデルの推定リスクの不安定性は、しばしばかなりのものであり、新しいデータにおける予測の誤校正として現れます。
論文 参考訳(メタデータ) (2022-11-02T11:55:28Z) - AIST: An Interpretable Attention-based Deep Learning Model for Crime
Prediction [0.30458514384586394]
AISTは、犯罪予測のための注意ベースの解釈可能なSテンポラルネットワークです。
AISTは、特定の犯罪カテゴリの動的空間依存性と時間パターンをモデル化する。
実験では,実データを用いた精度と解釈の両面で,モデルの優越性を示す。
論文 参考訳(メタデータ) (2020-12-16T03:01:15Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Prediction of Homicides in Urban Centers: A Machine Learning Approach [0.8312466807725921]
本研究では、一般的なデータを用いたデータセットを用いて、殺人犯罪を予測する機械学習モデルを提案する。
生成されたデータセット上で、単純で堅牢なアルゴリズムで分析が行われた。
結果は,提案問題のベースラインとみなす。
論文 参考訳(メタデータ) (2020-08-16T19:13:53Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z) - Perfecting the Crime Machine [1.266953082426463]
本研究では、異なる機械学習技術を用いて犯罪関連統計、特にフィラデルフィアの犯罪タイプを予測する。
犯罪の場所と時刻を主な特徴として使用し、生データにある2つの特徴から異なる特徴を抽出し、多数のクラスラベルを扱うモデルを構築します。
本稿では,ランダムフォレストが,エラーログ損失2.3120の犯罪種別予測モデルとして最適であることを示す。
論文 参考訳(メタデータ) (2020-01-14T23:25:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。