論文の概要: Evasion Attacks Against Bayesian Predictive Models
- arxiv url: http://arxiv.org/abs/2506.09640v1
- Date: Wed, 11 Jun 2025 11:53:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.906676
- Title: Evasion Attacks Against Bayesian Predictive Models
- Title(参考訳): ベイズ予測モデルに対する侵略攻撃
- Authors: Pablo G. Arce, Roi Naveiro, David Ríos Insua,
- Abstract要約: 本稿では,このようなモデルに対する最適回避攻撃を設計するための一般的な手法を提案する。
本研究では, 特定の点予測の摂動と, 後部予測分布の変化の2つの対向的目的について検討する。
どちらのシナリオに対しても,新しい勾配に基づく攻撃を提案し,その実装と特性を様々な計算装置で検討する。
- 参考スコア(独自算出の注目度): 1.8570591025615457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an increasing interest in analyzing the behavior of machine learning systems against adversarial attacks. However, most of the research in adversarial machine learning has focused on studying weaknesses against evasion or poisoning attacks to predictive models in classical setups, with the susceptibility of Bayesian predictive models to attacks remaining underexplored. This paper introduces a general methodology for designing optimal evasion attacks against such models. We investigate two adversarial objectives: perturbing specific point predictions and altering the entire posterior predictive distribution. For both scenarios, we propose novel gradient-based attacks and study their implementation and properties in various computational setups.
- Abstract(参考訳): 敵攻撃に対する機械学習システムの振る舞いを分析することへの関心が高まっている。
しかし、敵対的機械学習の研究の多くは、古典的なセットアップにおける予測モデルに対する回避や毒殺攻撃に対する弱点の研究に焦点を合わせており、未調査の攻撃に対するベイズ予測モデルの影響も受けている。
本稿では,このようなモデルに対する最適回避攻撃を設計するための一般的な手法を提案する。
本研究では, 特定の点予測の摂動と, 後部予測分布の変化の2つの対向的目的について検討する。
どちらのシナリオに対しても,新しい勾配に基づく攻撃を提案し,その実装と特性を様々な計算装置で検討する。
関連論文リスト
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
敵対的機械学習の進歩にもかかわらず、敵対者の存在下でのガウスモデルに対する推論は特に過小評価されている。
我々は,意思決定者の条件推論とその後の行動の妨害を希望する自己関心のある攻撃者について,一組の明らかな変数を乱すことで検討する。
検出を避けるため、攻撃者は、破損した証拠の密度によって可否が決定される場合に、攻撃が可否を示すことを望んでいる。
論文 参考訳(メタデータ) (2024-11-21T17:46:55Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
この研究は、攻撃者が依然として不確実性推定を操作することに興味を持つ異なる敵シナリオに焦点を当てる。
特に、アウトプットが下流モジュールや人間のオペレータによって消費される場合、機械学習モデルの使用を損なうことが目標である。
論文 参考訳(メタデータ) (2023-09-19T12:54:09Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
本稿では,軌道予測モデルに対する新たな逆バックドア攻撃を提案する。
我々の攻撃は、自然主義的、従って、新しい2段階のアプローチで作られた毒のサンプルを盗むことによって、訓練時に被害者に影響を及ぼす。
提案手法は,予測モデルの性能を著しく損なうおそれがあり,攻撃効果が高いことを示す。
論文 参考訳(メタデータ) (2023-06-27T19:15:06Z) - Targeted Attacks on Timeseries Forecasting [0.6719751155411076]
本稿では,時系列予測モデルに対する指向性,振幅性,時間的標的攻撃の新たな定式化を提案する。
これらの攻撃は、出力予測の振幅と方向に特定の影響を与える。
実験結果から,時系列モデルに対する標的攻撃が有効であり,統計的類似性の観点からもより強力であることが示唆された。
論文 参考訳(メタデータ) (2023-01-27T06:09:42Z) - On the Robustness of Random Forest Against Untargeted Data Poisoning: An
Ensemble-Based Approach [42.81632484264218]
機械学習モデルでは、トレーニングセット(中毒)の分画の摂動が、モデルの精度を著しく損なう可能性がある。
本研究の目的は、ランダムな森林を標的のない無作為な毒殺攻撃から保護する、新しいハッシュベースのアンサンブルアプローチを実現することである。
論文 参考訳(メタデータ) (2022-09-28T11:41:38Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Robust Multivariate Time-Series Forecasting: Adversarial Attacks and
Defense Mechanisms [17.75675910162935]
新しい攻撃パターンは、ターゲット時系列の予測に悪影響を及ぼす。
我々は、このような攻撃の影響を軽減するための2つの防衛戦略を開発する。
実世界のデータセットの実験では、攻撃方式が強力であることを確認しています。
論文 参考訳(メタデータ) (2022-07-19T22:00:41Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Adversarial attacks against Bayesian forecasting dynamic models [1.8275108630751844]
AMLは、不正な推論エンジンにデータを操作する方法を研究している。
本稿では,ベイズ予測力学モデルに対する決定分析に基づく攻撃戦略を提案する。
論文 参考訳(メタデータ) (2021-10-20T21:23:45Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
本論文では,NLPにおける構造化予測タスクに対する攻撃と防御について検討する。
構造化予測モデルの構造化出力は、入力中の小さな摂動に敏感である。
本稿では,シーケンス・ツー・シーケンス・モデルを用いて,構造化予測モデルへの攻撃を学習する,新規で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-04T15:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。