論文の概要: Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood
- arxiv url: http://arxiv.org/abs/2507.08896v1
- Date: Fri, 11 Jul 2025 03:11:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:21.764284
- Title: Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood
- Title(参考訳): 時空間モデルによる予測因果推論と罰則的経験的嗜好
- Authors: Byunghee Lee, Hye Yeon Sin, Joonsung Kang,
- Abstract要約: 本研究では,従来の単一モデルアプローチの制約を克服する目的で設計された,予測因果推論のための統合フレームワークを提案する。
具体的には、空間的健康状態推定のための隠れマルコフモデルと、時間的結果の軌跡を捉えるためのマルチタスクとマルチグラフ畳み込みネットワーク(MTGCN)を組み合わせる。
有用性を示すために,がん,認知症,パーキンソン病などの臨床領域に焦点を当て,治療効果を直接観察することが困難である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces an integrated framework for predictive causal inference designed to overcome limitations inherent in conventional single model approaches. Specifically, we combine a Hidden Markov Model (HMM) for spatial health state estimation with a Multi Task and Multi Graph Convolutional Network (MTGCN) for capturing temporal outcome trajectories. The framework asymmetrically treats temporal and spatial information regarding them as endogenous variables in the outcome regression, and exogenous variables in the propensity score model, thereby expanding the standard doubly robust treatment effect estimation to jointly enhance bias correction and predictive accuracy. To demonstrate its utility, we focus on clinical domains such as cancer, dementia, and Parkinson disease, where treatment effects are challenging to observe directly. Simulation studies are conducted to emulate latent disease dynamics and evaluate the model performance under varying conditions. Overall, the proposed framework advances predictive causal inference by structurally adapting to spatiotemporal complexities common in biomedical data.
- Abstract(参考訳): 本研究では,従来の単一モデルアプローチに固有の制約を克服するために,予測因果推論のための統合フレームワークを提案する。
具体的には、空間的健康状態推定のための隠れマルコフモデル(HMM)と、時間的結果の軌跡を捉えるためのマルチタスクとマルチグラフ畳み込みネットワーク(MTGCN)を組み合わせる。
このフレームワークは、結果回帰における時間的・空間的な情報を内在変数として非対称に扱い、確率スコアモデルにおける外在変数として、標準2倍堅牢な処理効果推定を拡張し、バイアス補正と予測精度を両立させる。
有用性を示すため,がん,認知症,パーキンソン病などの臨床領域に焦点をあて,治療効果を直接観察することが困難である。
本研究は,潜伏病の動態をエミュレートし,様々な条件下でのモデル性能を評価するためのシミュレーション研究である。
提案手法は, バイオメディカルデータに共通する時空間的複雑度に構造的に適応することにより, 予測因果推論を推し進める。
関連論文リスト
- Beyond the ATE: Interpretable Modelling of Treatment Effects over Dose and Time [50.522931466747934]
本研究では, 治療効果トラジェクトリを線量および時間とともに滑らかな表面としてモデル化する枠組みを提案する。
本研究は, 臨床的に有意な特性の特定から, 軌道形状の推定を分離する。
本手法は, 処理力学の精度, 解釈可能, 編集可能なモデルを生成する。
論文 参考訳(メタデータ) (2025-07-09T20:33:33Z) - Developing hybrid mechanistic and data-driven personalized prediction models for platelet dynamics [0.0]
造血系に対する薬物による損傷である造血毒性は、しばしば化学療法の副作用である。
現在の力学モデルは、不規則または非典型的軌跡の患者に対して、正確な結果を予測するのに苦労することが多い。
化学療法中の血小板数の個人化時系列モデリングのためのハイブリッド力学およびデータ駆動手法の開発と比較を行った。
論文 参考訳(メタデータ) (2025-05-27T13:52:23Z) - Spatial Reasoning with Denoising Models [49.83744014336816]
本稿では,連続変数の集合に対する推論を行うためのフレームワークを提案する。
初めて、その生成順序をデノナイジングネットワーク自体によって予測できる。
これらの結果から,特定の推論タスクの精度を1%から50%に向上させることができる。
論文 参考訳(メタデータ) (2025-02-28T14:08:30Z) - Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak [0.0]
本稿では,先進的な深層学習技術と機械的疫学の原則を融合させるEGDL手法を提案する。
我々のフレームワークは、飽和入射率とグラフラプラシア拡散を付加したネットワーク化された感受性-感染-回復モデル(MN-SIR)に基づいて構築されている。
全国47都道府県と中国本土31県で実施したTB頻度データから,本手法が堅牢かつ正確な予測を行うことを示す。
論文 参考訳(メタデータ) (2025-02-15T12:39:42Z) - Asymmetrical Latent Representation for Individual Treatment Effect Modeling [2.951007363818389]
条件付き平均治療効果評価は、医療、社会学、広告などの分野における因果モデリングにとって重要な課題である。
本稿では, 個別処理効果のための非対称ラテント表現(ALRITE)と呼ばれる2つの潜在空間の非対称探索に基づく新しいCATE推定手法を提案する。
論文 参考訳(メタデータ) (2025-01-23T14:44:36Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data [3.3523758554338734]
時間とともに治療効果を推定することは、精密医療、疫学、経済、マーケティングなど多くの現実世界の応用において重要である。
我々は、観測されていないリスク要因、すなわち、結果の順序だけに影響を与える調整変数を仮定することで、異なる視点を取る。
我々は、時間変化効果と未観測の調整変数によって生じる課題に対処する。
論文 参考訳(メタデータ) (2023-10-16T16:32:35Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
本研究では,観測データにおける不整合問題に対処するため,モデルに基づく森林の修正を提案する。
この戦略は,様々な結果分布を模擬した実験において,コンバウンディング効果を低減させることがわかった。
筋萎縮性側索硬化症の進行に対するリルゾールの潜在的ヘテロジニアス効果を評価することにより,HTEの生存率と経時的成績を推定する実践的側面を示す。
論文 参考訳(メタデータ) (2022-10-06T11:49:39Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。