FINER++: Building a Family of Variable-periodic Functions for Activating Implicit Neural Representation
- URL: http://arxiv.org/abs/2407.19434v1
- Date: Sun, 28 Jul 2024 09:24:57 GMT
- Title: FINER++: Building a Family of Variable-periodic Functions for Activating Implicit Neural Representation
- Authors: Hao Zhu, Zhen Liu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, Xun Cao,
- Abstract summary: Implicit Neural Representation (INR) is causing a revolution in the field of signal processing.
INR techniques suffer from the "frequency"-specified spectral bias and capacity-convergence gap.
We propose the FINER++ framework by extending existing periodic/non-periodic activation functions to variable-periodic ones.
- Score: 39.116375158815515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representation (INR), which utilizes a neural network to map coordinate inputs to corresponding attributes, is causing a revolution in the field of signal processing. However, current INR techniques suffer from the "frequency"-specified spectral bias and capacity-convergence gap, resulting in imperfect performance when representing complex signals with multiple "frequencies". We have identified that both of these two characteristics could be handled by increasing the utilization of definition domain in current activation functions, for which we propose the FINER++ framework by extending existing periodic/non-periodic activation functions to variable-periodic ones. By initializing the bias of the neural network with different ranges, sub-functions with various frequencies in the variable-periodic function are selected for activation. Consequently, the supported frequency set can be flexibly tuned, leading to improved performance in signal representation. We demonstrate the generalization and capabilities of FINER++ with different activation function backbones (Sine, Gauss. and Wavelet) and various tasks (2D image fitting, 3D signed distance field representation, 5D neural radiance fields optimization and streamable INR transmission), and we show that it improves existing INRs. Project page: {https://liuzhen0212.github.io/finerpp/}
Related papers
- Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
Implicit Representation (INR) leveraging a neural network to transform coordinate input into corresponding attributes has driven significant advances in vision-related domains.
We propose SL$2$A-INR with a single-layer learnable activation function, prompting the effectiveness of traditional ReLU-baseds.
Our method performs superior across diverse tasks, including image representation, 3D shape reconstruction, single image super-resolution, CT reconstruction, and novel view.
arXiv Detail & Related papers (2024-09-17T02:02:15Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
Implicit neural representations (INRs) use neural networks to provide continuous and resolution-independent representations of complex signals.
The proposed FKAN utilizes learnable activation functions modeled as Fourier series in the first layer to effectively control and learn the task-specific frequency components.
Experimental results show that our proposed FKAN model outperforms three state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-09-14T05:53:33Z) - Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion [12.935592400092712]
Implicit neural representations (INR) have made significant strides in various vision-related domains.
INR is prone to losing high-frequency information and is confined to the lack of global perceptual capabilities.
This paper introduces a Fourier-enhanced Implicit Neural Fusion Network (FeINFN) specifically designed for MHIF task.
arXiv Detail & Related papers (2024-04-23T16:14:20Z) - FINER: Flexible spectral-bias tuning in Implicit NEural Representation
by Variable-periodic Activation Functions [40.80112550091512]
Implicit Neural Representation is causing a revolution in the field of signal processing.
Current INR techniques suffer from a restricted capability to tune their supported frequency set.
We propose variable-periodic activation functions, for which we propose FINER.
We demonstrate the capabilities of FINER in the contexts of 2D image fitting, 3D signed distance field representation, and 5D neural fields radiance optimization.
arXiv Detail & Related papers (2023-12-05T02:23:41Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - Disorder-invariant Implicit Neural Representation [32.510321385245774]
Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates.
We propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone.
arXiv Detail & Related papers (2023-04-03T09:28:48Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
We propose Versatile Neural Processes (VNP), which largely increases the capability of approximating functions.
Specifically, we introduce a bottleneck encoder that produces fewer and informative context tokens, relieving the high computational cost.
We demonstrate the effectiveness of the proposed VNP on a variety of tasks involving 1D, 2D and 3D signals.
arXiv Detail & Related papers (2023-01-21T04:08:46Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Modulated Periodic Activations for Generalizable Local Functional
Representations [113.64179351957888]
We present a new representation that generalizes to multiple instances and achieves state-of-the-art fidelity.
Our approach produces general functional representations of images, videos and shapes, and achieves higher reconstruction quality than prior works that are optimized for a single signal.
arXiv Detail & Related papers (2021-04-08T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.