論文の概要: Perm: A Parametric Representation for Multi-Style 3D Hair Modeling
- arxiv url: http://arxiv.org/abs/2407.19451v4
- Date: Sat, 14 Dec 2024 11:58:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:35.324434
- Title: Perm: A Parametric Representation for Multi-Style 3D Hair Modeling
- Title(参考訳): Perm:マルチスタイル3次元ヘアモデリングのためのパラメトリック表現
- Authors: Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk, Jorge Alejandro Amador Herrera, Dominik L. Michels, Tuanfeng Y. Wang, Meng Zhang, Holly Rushmeier, Yi Zhou,
- Abstract要約: Permは、さまざまな毛髪関連の応用を促進するために設計された人間の3D毛髪のパラメトリック表現である。
ヘアテクスチャを低周波・高周波ヘア構造に適合・分解するために,我々のストランド表現を活用している。
- 参考スコア(独自算出の注目度): 22.790597419351528
- License:
- Abstract: We present Perm, a learned parametric representation of human 3D hair designed to facilitate various hair-related applications. Unlike previous work that jointly models the global hair structure and local curl patterns, we propose to disentangle them using a PCA-based strand representation in the frequency domain, thereby allowing more precise editing and output control. Specifically, we leverage our strand representation to fit and decompose hair geometry textures into low- to high-frequency hair structures, termed guide textures and residual textures, respectively. These decomposed textures are later parameterized with different generative models, emulating common stages in the hair grooming process. We conduct extensive experiments to validate the architecture design of Perm, and finally deploy the trained model as a generic prior to solve task-agnostic problems, further showcasing its flexibility and superiority in tasks such as single-view hair reconstruction, hairstyle editing, and hair-conditioned image generation. More details can be found on our project page: https://cs.yale.edu/homes/che/projects/perm/.
- Abstract(参考訳): 本稿では,人間の3次元毛髪のパラメトリック表現であるPermについて紹介する。
グローバルヘア構造と局所カールパターンを共同でモデル化した以前の研究とは異なり、周波数領域におけるPCAベースのストランド表現を用いてそれらを分解し、より正確な編集と出力制御を可能にすることを提案する。
具体的には,髪形テクスチャを,ガイドテクスチャ (ガイドテクスチャ) と残留テクスチャ (残留テクスチャ) と呼ばれる低周波ヘア構造と高周波ヘア構造に適合させ分解する。
これらの分解されたテクスチャは、後に異なる生成モデルでパラメータ化され、ヘアグリーニングプロセスの一般的な段階をエミュレートする。
我々はPermのアーキテクチャ設計を検証するための広範囲な実験を行い、最終的にトレーニングされたモデルを汎用としてデプロイし、タスク非依存の問題を解決するとともに、単一視点の髪型再構成、髪型編集、髪型画像生成などのタスクにおいて、その柔軟性と優位性を示す。
詳細はプロジェクトのページで確認できます。
関連論文リスト
- Towards Unified 3D Hair Reconstruction from Single-View Portraits [27.404011546957104]
そこで本研究では,統一パイプラインによるヘアタイプの一視点3D再構成を実現するための新しい手法を提案する。
本実験は, 単一視像からの編み型3次元毛髪と非編み型3次元毛髪の再構築が可能であることを示す。
論文 参考訳(メタデータ) (2024-09-25T12:21:31Z) - Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
従来のヘアストランドと3Dガウスの二重表現を用いた新しいヘアモデリング手法を提案する。
ヒトのアバターをモデル化するための非構造ガウス的アプローチとは対照的に,本手法は3Dポリラインや鎖を用いて髪を再構築する。
提案手法はGaussian Haircutと呼ばれ, 合成シーンと実シーンで評価し, ストランドベースヘア再構築作業における最先端性能を実証する。
論文 参考訳(メタデータ) (2024-09-23T07:49:46Z) - MonoHair: High-Fidelity Hair Modeling from a Monocular Video [40.27026803872373]
MonoHairはモノクロビデオから高忠実度毛髪再構築を実現するための汎用フレームワークである。
提案手法は, 毛髪のモデリング過程を, 正確な外装再構築と内部構造推定の2つの段階に分岐させる。
実験により,本手法は多彩なヘアスタイルにまたがって頑健性を示し,最先端の性能を実現していることが示された。
論文 参考訳(メタデータ) (2024-03-27T08:48:47Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
そこで本研究では,3次元ヘアスタイルのための新しいストランドベース生成モデルであるHAARについて紹介する。
テキスト入力に基づいて、HAARは現代のコンピュータグラフィックスエンジンで生産レベルの資産として使用できる3Dヘアスタイルを生成する。
論文 参考訳(メタデータ) (2023-12-18T19:19:32Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction [4.714310894654027]
本研究は, 単眼ビデオや多視点画像から, 鎖レベルでの正確な髪形再構成を実現する手法を提案する。
ニューラル・ヘアカット(Neural Haircut)と呼ばれるこの組み合わせシステムは、再建されたヘアスタイルの高度なリアリズムとパーソナライズを実現している。
論文 参考訳(メタデータ) (2023-06-09T13:08:34Z) - HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for
Single-View 3D Hair Modeling [55.57803336895614]
学習型単一視点3Dヘアモデリングの課題に対処する。
まず, ストランドマップと深度マップからなる新しい中間表現をHairStepと呼ぶ。
HairStepは正確な3Dヘアモデリングに十分な情報を提供するだけでなく、実際の画像から推測できる。
論文 参考訳(メタデータ) (2023-03-05T15:28:13Z) - i3DMM: Deep Implicit 3D Morphable Model of Human Heads [115.19943330455887]
本報告では,頭部の3次元形態素モデル(i3DMM)について述べる。
顔の形状、テクスチャ、表情を識別するだけでなく、髪を含む頭部全体をモデル化する。
アブレーション研究,最先端モデルとの比較,セマンティックヘッド編集やテクスチャ転送などの応用を用いて,i3DMMの利点を示す。
論文 参考訳(メタデータ) (2020-11-28T15:01:53Z) - MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait
Editing [122.82964863607938]
MichiGANはインタラクティブな顔料の毛髪操作のための条件付き画像生成手法である。
我々は, 形状, 構造, 外観, 背景など, 主要毛髪の視覚的要因のすべてをユーザコントロールする。
また,直感的かつ高レベルなユーザ入力を投影することで,髪の直感的な操作を可能にするインタラクティブな肖像画毛髪編集システムを構築した。
論文 参考訳(メタデータ) (2020-10-30T17:59:10Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
深層学習近似として表される暗黙の関数は、3次元曲面の再構成に強力である。
このような機能は、コンピュータグラフィックスとコンピュータビジョンの両方に柔軟なモデルを構築するのに不可欠である。
詳細に富んだ暗黙関数とパラメトリック表現を組み合わせた方法論を提案する。
論文 参考訳(メタデータ) (2020-07-22T13:46:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。