論文の概要: Solving Short-Term Relocalization Problems In Monocular Keyframe Visual SLAM Using Spatial And Semantic Data
- arxiv url: http://arxiv.org/abs/2407.19518v1
- Date: Sun, 28 Jul 2024 15:54:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 17:42:21.050495
- Title: Solving Short-Term Relocalization Problems In Monocular Keyframe Visual SLAM Using Spatial And Semantic Data
- Title(参考訳): 空間的・意味的データを用いた単眼鍵フレーム視覚SLAMにおける短期的再局在問題の解法
- Authors: Azmyin Md. Kamal, Nenyi K. N. Dadson, Donovan Gegg, Corina Barbalata,
- Abstract要約: 本稿では,単眼カメラシステムを用いた移動ロボットのロバストな短期的再ローカライズ機能の開発に焦点をあてる。
環境中で検出されたオブジェクトのセマンティック情報を含む、新しいマルチモーダルディスクリプタが導入された。
この記述子を用いて,マルチステージフィルタリングアルゴリズムとして定式化された新しいキーフレームベースのPlace Recognition (KPR)法を提案する。
- 参考スコア(独自算出の注目度): 1.2937020918620652
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In Monocular Keyframe Visual Simultaneous Localization and Mapping (MKVSLAM) frameworks, when incremental position tracking fails, global pose has to be recovered in a short-time window, also known as short-term relocalization. This capability is crucial for mobile robots to have reliable navigation, build accurate maps, and have precise behaviors around human collaborators. This paper focuses on the development of robust short-term relocalization capabilities for mobile robots using a monocular camera system. A novel multimodal keyframe descriptor is introduced, that contains semantic information of objects detected in the environment and the spatial information of the camera. Using this descriptor, a new Keyframe-based Place Recognition (KPR) method is proposed that is formulated as a multi-stage keyframe filtering algorithm, leading to a new relocalization pipeline for MKVSLAM systems. The proposed approach is evaluated over several indoor GPS denied datasets and demonstrates accurate pose recovery, in comparison to a bag-of-words approach.
- Abstract(参考訳): Monocular Keyframe Visual Simultaneous Localization and Mapping (MKVSLAM)フレームワークでは、インクリメンタルな位置追跡が失敗すると、グローバルなポーズを短時間のウィンドウ(短期的な再ローカライゼーションとしても知られる)で回収する必要がある。
この能力は、移動ロボットにとって、信頼性の高いナビゲーション、正確なマップの構築、そして人間の協力者に関する正確な行動を持つことが不可欠である。
本稿では,単眼カメラシステムを用いた移動ロボットのロバストな短期的再ローカライズ機能の開発に焦点をあてる。
環境中で検出されたオブジェクトのセマンティック情報とカメラの空間情報とを含む、新しいマルチモーダル・キーフレームディスクリプタが導入された。
この記述子を用いることで、マルチステージ鍵フレームフィルタリングアルゴリズムとして定式化された新しいキーフレームベースのPlace Recognition (KPR)法が提案され、MKVSLAMシステムのための新しい再ローカライゼーションパイプラインとなる。
提案手法は複数の屋内GPSが否定したデータセットに対して評価され,単語のバッグ・オブ・ワード・アプローチと比較して正確なポーズ・リカバリを示す。
関連論文リスト
- Why Sample Space Matters: Keyframe Sampling Optimization for LiDAR-based Place Recognition [6.468510459310326]
位置認識におけるサンプル空間の概念を導入し、異なるサンプリング手法がクエリプロセスと全体的なパフォーマンスに与える影響を実証する。
そこで我々は,超次元ディスクリプタ空間における冗長性と情報保存に着目した,LiDARに基づく位置認識のための新しいサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T16:29:47Z) - RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning [20.688641105430467]
GPS信号が信頼できない場合、グローバルなローカライゼーションは自動運転やロボティクスの応用において不可欠である。
ほとんどのアプローチは、逐次位置認識(PR)とポーズ推定(PE)により、グローバルなローカライゼーションを実現する。
ポーズ推定から直接導出することで、別の場所認識の必要性を回避できる新しいパラダイムであるPR-by-PEローカライゼーションを導入する。
本稿では,鳥眼視(BEV)空間で動作する終端PR-by-PEローカライゼーションネットワークであるRING#を提案する。
論文 参考訳(メタデータ) (2024-08-30T18:42:53Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
位置認識のための新しいネットワークであるOverlapMambaを開発した。
本手法は,以前に訪れた場所を異なる方向から横断する場合でも,ループの閉鎖を効果的に検出する。
生のレンジビューの入力に基づいて、典型的なLiDARと複数ビューの組み合わせ法を時間的複雑さと速度で上回っている。
論文 参考訳(メタデータ) (2024-05-13T17:46:35Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Persistent Homology Meets Object Unity: Object Recognition in Clutter [2.356908851188234]
見えない屋内環境における隠蔽物体の認識は、移動ロボットにとって難しい問題である。
本稿では,深度画像から生成された点雲のための新しい記述子TOPSと,人間の推論にインスパイアされた認識フレームワークTHORを提案する。
THORは両方のデータセットで最先端の手法より優れており、UW-IS Occludedデータセットのすべてのシナリオに対する認識精度が大幅に向上している。
論文 参考訳(メタデータ) (2023-05-05T19:42:39Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
本稿では,屋内環境における視覚的位置認識能力の探索を目的とした,HPointLocという新しいデータセットを提案する。
データセットは人気のあるHabitatシミュレータに基づいており、独自のセンサーデータとオープンデータセットの両方を使用して屋内シーンを生成することができる。
論文 参考訳(メタデータ) (2022-12-30T12:20:56Z) - Sparse Image based Navigation Architecture to Mitigate the need of
precise Localization in Mobile Robots [3.1556608426768324]
本稿では,スパース画像を用いた自律走行を追求する移動ロボットの正確な位置決めの必要性を軽減することに焦点を当てる。
提案手法は,教師なし学習のためのモデルアーキテクチャであるRoomNetで構成され,環境の粗い同定を行う。
後者はスパース画像マッチングを用いて、マッピングおよびトレーニング段階においてロボットが見たフレームをvis-a-visで達成したフレームの類似性を特徴付ける。
論文 参考訳(メタデータ) (2022-03-29T06:38:18Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
本稿では, 屋内環境におけるオブジェクトのアクティブビジュアルサーチ(AVS)の最適ポリシーを, オンライン設定で学習する問題に焦点をあてる。
提案手法はエージェントの現在のポーズとRGB-Dフレームを入力として使用する。
提案手法を利用可能なAVDベンチマークで検証し,平均成功率0.76,平均パス長17.1とした。
論文 参考訳(メタデータ) (2020-09-17T08:23:50Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
屋内ローカライゼーションは、位置ベースアプリケーションにおける基本的な問題である。
本稿では,インフラストラクチャフリーで多視点画像に基づく屋内ローカライゼーションを実現するために,新しいニューラルネットワークアーキテクチャであるGraph Location Networks(GLN)を提案する。
GLNは、メッセージパッシングネットワークを通じて画像から抽出されたロバストな位置表現に基づいて位置予測を行う。
新たにゼロショット屋内ローカライズ設定を導入し,提案したGLNを専用ゼロショットバージョンに拡張することで,その課題に対処する。
論文 参考訳(メタデータ) (2020-08-06T07:36:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。