論文の概要: Prometheus Chatbot: Knowledge Graph Collaborative Large Language Model for Computer Components Recommendation
- arxiv url: http://arxiv.org/abs/2407.19643v1
- Date: Mon, 29 Jul 2024 01:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:25:50.035976
- Title: Prometheus Chatbot: Knowledge Graph Collaborative Large Language Model for Computer Components Recommendation
- Title(参考訳): Prometheus Chatbot:コンピュータコンポーネント推奨のための知識グラフ協調大規模言語モデル
- Authors: Yunsheng Wang, Songhao Chen, Kevin Jin,
- Abstract要約: Prometheus" は知識グラフと,コンピュータコンポーネントを推奨する大規模言語モデル (LLM) を統合している。
Prometheusはユーザのリクエストを正確にデコードし、パーソナライズされたレコメンデーションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs) are essential in applications such as network alignment, question-answering, and recommender systems (RSs) since they offer structured relational data that facilitate the inference of indirect relationships. However, the development of KG-based RSs capable of processing user inputs in natural language faces significant challenges. Firstly, natural language processing units must effectively handle the ambiguity and variability in human language to interpret user intents accurately. Secondly, the system must precisely identify and link entities, like product names, to their corresponding nodes in KGs. To overcome these challenges, supported by Lenovo, we developed a novel chatbot called "Prometheus," which integrates a KG with a large language model (LLM), specifically designed for recommending computer components. This chatbot can accurately decode user requests and deliver personalized recommendations derived from KGs, ensuring precise comprehension and response to their computer setup needs.
- Abstract(参考訳): 知識グラフ(KG)は、間接関係の推論を容易にする構造化された関係データを提供するため、ネットワークアライメント、質問応答、レコメンダシステム(RS)などのアプリケーションに必須である。
しかし、自然言語でユーザ入力を処理できるKGベースのRSの開発は、大きな課題に直面している。
まず、自然言語処理ユニットは、ユーザの意図を正確に解釈するために、人間の言語におけるあいまいさと可変性を効果的に処理する必要がある。
第二に、システムは製品名のようなエンティティをKG内の対応するノードに正確に識別し、リンクする必要がある。
Lenovoがサポートしたこれらの課題を克服するため,我々は,コンピュータコンポーネントを推奨するKGと大規模言語モデル(LLM)を統合した,"Prometheus"という新しいチャットボットを開発した。
このチャットボットは、ユーザの要求を正確にデコードし、KGから派生したパーソナライズされたレコメンデーションを提供し、コンピュータのセットアップニーズに対する正確な理解と応答を保証する。
関連論文リスト
- Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
本研究では,LGM-TSC(Large Generative Model-assisted Talking-face Semantic Communication)システムを提案する。
送信機のジェネレーティブセマンティック・エクストラクタ(GSE)は、意味的にスパースな音声映像を高情報密度のテキストに変換する。
意味的曖昧さと修正のためのLarge Language Model (LLM)に基づくPrivate Knowledge Base (KB)。
BERT-VITS2とSadTalkerモデルを用いた生成意味再構成(GSR)により、テキストを高QoE音声ビデオに変換する。
論文 参考訳(メタデータ) (2024-11-06T12:45:46Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - PADL: Language-Directed Physics-Based Character Control [66.517142635815]
本稿では,文字が行うべきハイレベルなタスクと低レベルなスキルを指定するために,ユーザが自然言語コマンドを発行できるようにするPADLを提案する。
我々は,シミュレーションされたヒューマノイドキャラクタを効果的に誘導し,多種多様な複雑な運動能力を実現するために,本フレームワークを適用した。
論文 参考訳(メタデータ) (2023-01-31T18:59:22Z) - Intent Recognition in Conversational Recommender Systems [0.0]
会話における入力発話を文脈化するためのパイプラインを導入する。
次に、逆機能エンジニアリングを活用して、コンテキスト化された入力と学習モデルをリンクして、意図認識をサポートするための次のステップを踏み出します。
論文 参考訳(メタデータ) (2022-12-06T11:02:42Z) - Improving Conversational Recommendation Systems' Quality with
Context-Aware Item Meta Information [42.88448098873448]
対話レコメンデーションシステム(CRS)は,対話履歴からユーザの好みを推測することでユーザと対話する。
従来のCRSでは、知識グラフ(KG)ベースのレコメンデーションモジュールを使用し、応答生成のための言語モデルとKGを統合する。
本稿では,事前学習言語モデル(PLM)と項目メタデータエンコーダを組み合わせた,シンプルで効果的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-15T14:12:48Z) - KECRS: Towards Knowledge-Enriched Conversational Recommendation System [50.0292306485452]
chit-chatベースの会話レコメンデーションシステム(crs)は、自然言語インタラクションを通じてユーザーにアイテムレコメンデーションを提供する。
外部知識グラフ(KG)がChit-chatベースのCRSに導入されている。
KECRS(Knowledge-Enriched Conversational Recommendation System)の提案
大規模データセットの実験結果は、KECRSが最先端のキトチャットベースのCRSを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-05-18T03:52:06Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。