論文の概要: Intent Recognition in Conversational Recommender Systems
- arxiv url: http://arxiv.org/abs/2212.03721v1
- Date: Tue, 6 Dec 2022 11:02:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:31:48.867661
- Title: Intent Recognition in Conversational Recommender Systems
- Title(参考訳): 会話推薦システムにおける意図認識
- Authors: Sahar Moradizeyveh
- Abstract要約: 会話における入力発話を文脈化するためのパイプラインを導入する。
次に、逆機能エンジニアリングを活用して、コンテキスト化された入力と学習モデルをリンクして、意図認識をサポートするための次のステップを踏み出します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Any organization needs to improve their products, services, and processes. In
this context, engaging with customers and understanding their journey is
essential. Organizations have leveraged various techniques and technologies to
support customer engagement, from call centres to chatbots and virtual agents.
Recently, these systems have used Machine Learning (ML) and Natural Language
Processing (NLP) to analyze large volumes of customer feedback and engagement
data. The goal is to understand customers in context and provide meaningful
answers across various channels. Despite multiple advances in Conversational
Artificial Intelligence (AI) and Recommender Systems (RS), it is still
challenging to understand the intent behind customer questions during the
customer journey. To address this challenge, in this paper, we study and
analyze the recent work in Conversational Recommender Systems (CRS) in general
and, more specifically, in chatbot-based CRS. We introduce a pipeline to
contextualize the input utterances in conversations. We then take the next step
towards leveraging reverse feature engineering to link the contextualized input
and learning model to support intent recognition. Since performance evaluation
is achieved based on different ML models, we use transformer base models to
evaluate the proposed approach using a labelled dialogue dataset (MSDialogue)
of question-answering interactions between information seekers and answer
providers.
- Abstract(参考訳): どんな組織でも製品やサービス、プロセスを改善する必要があります。
この文脈では、顧客と関わり、彼らの旅を理解することが不可欠です。
組織は、コールセンタからチャットボットや仮想エージェントに至るまで、さまざまな技術と技術を活用して顧客エンゲージメントを支援しています。
近年,機械学習(ML)と自然言語処理(NLP)を用いて大量の顧客フィードバックやエンゲージメントデータを分析している。
目標は、顧客をコンテキストで理解し、さまざまなチャネルで意味のある回答を提供することです。
Conversational Artificial Intelligence (AI) と Recommender Systems (RS) の進歩にもかかわらず、顧客ジャーニーにおける顧客の質問の背後にある意図を理解することは依然として困難である。
本稿では,この課題に対処するため,チャットボットベースのcrsにおいて,会話型推薦システム(crs)における最近の研究を概観し,分析する。
会話中の入力発話をコンテキスト化するパイプラインを導入する。
次に、コンテキスト化された入力と学習モデルをリンクしてインテント認識をサポートするリバース機能エンジニアリングを活用するための次のステップを取ります。
異なるMLモデルに基づいて性能評価を行うため、情報探索者と回答提供者間の質問応答のラベル付き対話データセット(MSDialogue)を用いて、トランスフォーマーベースモデルを用いて提案手法の評価を行う。
関連論文リスト
- Question Suggestion for Conversational Shopping Assistants Using Product Metadata [24.23400061359442]
本稿では,Large Language Models (LLMs) を用いて,製品に関する文脈的,有用な,応答可能な,流動的で多様な質問を自動的に生成するフレームワークを提案する。
これらの質問を顧客に対して、会話の開始と継続の両方に役立つ提案やヒントとして提案することは、よりスムーズで高速なショッピング体験をもたらす。
論文 参考訳(メタデータ) (2024-05-02T21:16:19Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - A Conversation is Worth A Thousand Recommendations: A Survey of Holistic
Conversational Recommender Systems [54.78815548652424]
会話レコメンデータシステムは対話的なプロセスを通じてレコメンデーションを生成する。
すべてのCRSアプローチが、インタラクションデータのソースとして人間の会話を使用するわけではない。
全体論的CRSは、現実世界のシナリオから収集された会話データを使って訓練される。
論文 参考訳(メタデータ) (2023-09-14T12:55:23Z) - Data Augmentation for Conversational AI [17.48107304359591]
データ拡張(DA)は、会話システムにおけるデータ不足問題を軽減するための感情的なアプローチである。
このチュートリアルは、会話システムのコンテキストにおけるDAアプローチの包括的で最新の概要を提供する。
論文 参考訳(メタデータ) (2023-09-09T09:56:35Z) - Continual Dialogue State Tracking via Example-Guided Question Answering [48.31523413835549]
そこで本研究では,対話状態の追跡を具体化した質問応答タスクのバンドルとして提案する。
我々のアプローチは、サービス固有の記憶を緩和し、与えられた質問や例を文脈化するためのモデルを教える。
類似の対話状態変化のあるターンを識別するために訓練された検索者によって検索されたコンテキスト内例から学習することで,600万のパラメータしか持たないモデルが大きな向上を達成できることがわかった。
論文 参考訳(メタデータ) (2023-05-23T06:15:43Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - DialogQAE: N-to-N Question Answer Pair Extraction from Customer Service
Chatlog [34.69426306212259]
そこで,N-to-NQA抽出タスクを提案する。
5つのカスタマサービスデータセット上で良好に機能する、エンドツーエンドと2段階のバリエーションを備えた、生成的/識別的タグ付けベースの一連の方法を紹介します。
論文 参考訳(メタデータ) (2022-12-14T09:05:14Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Actionable Conversational Quality Indicators for Improving Task-Oriented
Dialog Systems [2.6094079735487994]
本稿では、ACQI(Actionable Conversational Quality Indicator)の使用について紹介し、解説する。
ACQIは、改善可能なダイアログの一部を認識し、改善する方法を推奨するために使用される。
本稿では、商用顧客サービスアプリケーションで使用されるLivePersonの内部ダイアログシステムにおけるACQIの使用の有効性を示す。
論文 参考訳(メタデータ) (2021-09-22T22:41:42Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
現在の会話レコメンダーシステム(CRS)で使用されるテクニックの体系的なレビューを提供します。
CRS開発の主な課題を5つの方向にまとめます。
これらの研究の方向性は、情報検索(IR)、自然言語処理(NLP)、人間とコンピュータの相互作用(HCI)などの複数の研究分野を含みます。
論文 参考訳(メタデータ) (2021-01-23T08:53:15Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
会話レコメンデータシステム(CRS)は異なるアプローチを採用し、よりリッチなインタラクションをサポートする。
CRSに対する関心は、ここ数年で大幅に増加した。
この開発は主に自然言語処理の分野における著しい進歩によるものである。
論文 参考訳(メタデータ) (2020-04-01T18:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。