A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing
- URL: http://arxiv.org/abs/2407.19660v3
- Date: Tue, 18 Feb 2025 03:39:37 GMT
- Title: A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing
- Authors: Praveen Ravirathinam, Ankush Khandelwal, Rahul Ghosh, Vipin Kumar,
- Abstract summary: Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data.
We propose Causally Informed Variable-Step Forecasting (CI-VSF), a novel pretraining task that models forecasting as a conditional generation task.
We demonstrate that pretraining in such a fashion leads to enhanced performance when finetuned on both prediction and forecasting.
- Score: 16.824262496666893
- License:
- Abstract: Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the causal interplay between different geospatial and environmental variables. To address this limitation, we propose Causally Informed Variable-Step Forecasting (CI-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to enhanced performance when finetuned on both prediction (e.g., crop mapping, missing image prediction, soil moisture estimation) and forecasting (e.g., future image forecasting, soil moisture forecasting) downstream tasks when compared to other pretraining approaches. While we use remote sensing as our main application to demonstrate the efficacy of our proposed pretraining strategy over existing paradigms, it is applicable to any domain that involves known causal relationships amongst a set of variables.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
We develop a conditional latent diffusion model capable of probabilistic forecasts.
We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints.
arXiv Detail & Related papers (2023-07-19T19:19:13Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
We propose a unified evaluation pipeline for forecasting methods with real-world perception inputs.
Our in-depth study uncovers a substantial performance gap when transitioning from curated to perception-based data.
arXiv Detail & Related papers (2023-06-15T17:03:14Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
We evaluate how such a paradigm should be done in imitation learning.
We consider a setting where the pretraining corpus consists of multitask demonstrations.
We argue that inverse dynamics modeling is well-suited to this setting.
arXiv Detail & Related papers (2023-05-26T14:40:46Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
arXiv Detail & Related papers (2022-11-29T01:11:04Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
We propose a generic motion forecasting framework with dynamic key information selection and ranking based on a hybrid attention mechanism.
The framework is instantiated to handle multi-agent trajectory prediction and human motion forecasting tasks.
We validate the framework on both synthetic simulations and motion forecasting benchmarks in different domains.
arXiv Detail & Related papers (2021-08-03T06:30:30Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Bridging the Gap Between Training and Inference for Spatio-Temporal
Forecasting [16.06369357595426]
We propose a novel curriculum learning based strategy named Temporal Progressive Growing Sampling to bridge the gap between training and inference for S-temporal sequence forecasting.
Experimental results demonstrate that our proposed method better models long term dependencies and outperforms baseline approaches on two competitive datasets.
arXiv Detail & Related papers (2020-05-19T10:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.