Improving satellite imagery segmentation using multiple Sentinel-2 revisits
- URL: http://arxiv.org/abs/2409.17363v2
- Date: Mon, 30 Sep 2024 23:08:29 GMT
- Title: Improving satellite imagery segmentation using multiple Sentinel-2 revisits
- Authors: Kartik Jindgar, Grace W. Lindsay,
- Abstract summary: We explore the best way to use revisits in the framework of fine-tuning pre-trained remote sensing models.
We find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits.
A SWIN Transformer-based architecture performs better than U-nets and ViT-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, analysis of remote sensing data has benefited immensely from borrowing techniques from the broader field of computer vision, such as the use of shared models pre-trained on large and diverse datasets. However, satellite imagery has unique features that are not accounted for in traditional computer vision, such as the existence of multiple revisits of the same location. Here, we explore the best way to use revisits in the framework of fine-tuning pre-trained remote sensing models. We focus on an applied research question of relevance to climate change mitigation -- power substation segmentation -- that is representative of applied uses of pre-trained models more generally. Through extensive tests of different multi-temporal input schemes across diverse model architectures, we find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits, including as a form of data augmentation. We also find that a SWIN Transformer-based architecture performs better than U-nets and ViT-based models. We verify the generality of our results on a separate building density estimation task.
Related papers
- Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
Existing face forgery detection usually follows the paradigm of training models in a single domain.
In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets.
arXiv Detail & Related papers (2024-06-28T17:42:08Z) - State Space Model for New-Generation Network Alternative to Transformers: A Survey [52.812260379420394]
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks.
To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods.
Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years.
arXiv Detail & Related papers (2024-04-15T07:24:45Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
We present a comparative analysis of various self-supervised Vision Transformers (ViTs)
Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning.
arXiv Detail & Related papers (2023-12-31T11:38:50Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - An empirical evaluation of attention-based multi-head models for
improved turbofan engine remaining useful life prediction [9.282239595143787]
A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals.
This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads.
arXiv Detail & Related papers (2021-09-04T01:13:47Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.