Adaptive Soft Error Protection for Neural Network Processing
- URL: http://arxiv.org/abs/2407.19664v2
- Date: Tue, 25 Feb 2025 10:05:51 GMT
- Title: Adaptive Soft Error Protection for Neural Network Processing
- Authors: Xinghua Xue, Cheng Liu, Feng Min, Yinhe Han,
- Abstract summary: Mitigating soft errors in neural networks (NNs) often incurs significant computational overhead.<n>Traditional methods mainly explored static vulnerability variations across NN components.<n>We propose a lightweight graph neural network (GNN) model capable of capturing input- and component-specific vulnerability to soft errors.
- Score: 6.7356731848370295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating soft errors in neural networks (NNs) often incurs significant computational overhead. Traditional methods mainly explored static vulnerability variations across NN components, employing selective protection to minimize costs. In contrast, this work reveals that NN vulnerability is also input-dependent, exhibiting dynamic variations at runtime. To this end, we propose a lightweight graph neural network (GNN) model capable of capturing input- and component-specific vulnerability to soft errors. This model facilitates runtime vulnerability prediction, enabling an adaptive protection strategy that dynamically adjusts to varying vulnerabilities. The approach complements classical fault-tolerant techniques by tailoring protection efforts based on real-time vulnerability assessments. Experimental results across diverse datasets and NNs demonstrate that our adaptive protection method achieves a 42.12\% average reduction in computational overhead compared to prior static vulnerability-based approaches, without compromising reliability.
Related papers
- Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)
By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.
We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Evaluating Model Robustness Using Adaptive Sparse L0 Regularization [5.772716337390152]
adversarial examples challenge existing defenses by altering a minimal subset of features.
Current L0 norm attack methodologies face a trade off between accuracy and efficiency.
This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm.
arXiv Detail & Related papers (2024-08-28T11:02:23Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Cross-Layer Optimization for Fault-Tolerant Deep Learning [17.724727744611535]
We propose to characterize deep learning vulnerability difference across both neurons and bits of each neuron, and leverage the vulnerability difference to enable selective protection of the deep learning processing components.
We employ Bayesian optimization strategy to co-optimize the correlated cross-layer design parameters at algorithm layer, architecture layer, and circuit layer.
arXiv Detail & Related papers (2023-12-21T11:35:45Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++.
This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model.
Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.
arXiv Detail & Related papers (2022-11-29T14:19:14Z) - A Novel Membership Inference Attack against Dynamic Neural Networks by
Utilizing Policy Networks Information [11.807178385292296]
We propose a novel MI attack against dynamic NNs, leveraging the unique policy networks mechanism of dynamic NNs.
Based on backbone-finetuning and information-fusion, our method achieves better results than baseline attack and traditional attack.
arXiv Detail & Related papers (2022-10-17T11:51:02Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
Adversarial training (AT) is often adopted to improve the robustness of deep neural networks (DNNs)
In this work, we propose an approach based on Jacobian norm and Selective Input Gradient Regularization (J- SIGR)
Experiments demonstrate that the proposed J- SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
arXiv Detail & Related papers (2022-07-09T01:06:41Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
We study the multi-class classification setting where the labels are considered sensitive and ought to be protected.
We propose a new algorithm for training deep neural networks with label differential privacy, and run evaluations on several datasets.
arXiv Detail & Related papers (2021-02-11T15:09:06Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Learning Adaptive Loss for Robust Learning with Noisy Labels [59.06189240645958]
Robust loss is an important strategy for handling robust learning issue.
We propose a meta-learning method capable of robust hyper tuning.
Four kinds of SOTA loss functions are attempted to be minimization, general availability and effectiveness.
arXiv Detail & Related papers (2020-02-16T00:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.