Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
- URL: http://arxiv.org/abs/2408.15702v1
- Date: Wed, 28 Aug 2024 11:02:23 GMT
- Title: Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
- Authors: Weiyou Liu, Zhenyang Li, Weitong Chen,
- Abstract summary: adversarial examples challenge existing defenses by altering a minimal subset of features.
Current L0 norm attack methodologies face a trade off between accuracy and efficiency.
This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm.
- Score: 5.772716337390152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks have demonstrated remarkable success in various domains but remain susceptible to adversarial examples, which are slightly altered inputs designed to induce misclassification. While adversarial attacks typically optimize under Lp norm constraints, attacks based on the L0 norm, prioritising input sparsity, are less studied due to their complex and non convex nature. These sparse adversarial examples challenge existing defenses by altering a minimal subset of features, potentially uncovering more subtle DNN weaknesses. However, the current L0 norm attack methodologies face a trade off between accuracy and efficiency either precise but computationally intense or expedient but imprecise. This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm, aimed at refining the robustness evaluation of DNNs against such perturbations.
Related papers
- Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
misclassification will occur when deep neural networks predict adversarial examples which add human-imperceptible adversarial noise to natural examples.
We propose textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)
LFRC constrains the relation of adversarial examples in latent space to be consistent with the natural examples.
arXiv Detail & Related papers (2023-03-29T13:50:01Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
Adversarial training (AT) is often adopted to improve the robustness of deep neural networks (DNNs)
In this work, we propose an approach based on Jacobian norm and Selective Input Gradient Regularization (J- SIGR)
Experiments demonstrate that the proposed J- SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
arXiv Detail & Related papers (2022-07-09T01:06:41Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Regularization with Adversarial Labelling of Perturbed Samples [22.37046166576859]
We propose Adversarial Labelling of Perturbed Samples (ALPS) as a regularization scheme.
ALPS trains neural networks with synthetic samples formed by perturbing each authentic input sample towards another one along with an adversarially assigned label.
Experiments on the SVHN, CIFAR-10, CIFAR-100 and Tiny-ImageNet datasets show that the ALPS has a state-of-the-art regularization performance.
arXiv Detail & Related papers (2021-05-28T11:26:49Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
arXiv Detail & Related papers (2020-12-08T20:51:43Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.