論文の概要: Smart Language Agents in Real-World Planning
- arxiv url: http://arxiv.org/abs/2407.19667v1
- Date: Mon, 29 Jul 2024 03:00:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:16:04.588108
- Title: Smart Language Agents in Real-World Planning
- Title(参考訳): 実世界の計画におけるスマート言語エージェント
- Authors: Annabelle Miin, Timothy Wei,
- Abstract要約: 大規模言語モデル(LLM)の旅行計画能力の向上を目指す。
LLM自動プロンプトと「Human-in-the-loop」を組み合わせた半自動プロンプト生成フレームワークを提案する。
以上の結果から,LLM自動プロンプトには制限があり,"Human-in-the-loop"は1回のイテレーションで139%の大幅な性能向上を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comprehensive planning agents have been a long term goal in the field of artificial intelligence. Recent innovations in Natural Language Processing have yielded success through the advent of Large Language Models (LLMs). We seek to improve the travel-planning capability of such LLMs by extending upon the work of the previous paper TravelPlanner. Our objective is to explore a new method of using LLMs to improve the travel planning experience. We focus specifically on the "sole-planning" mode of travel planning; that is, the agent is given necessary reference information, and its goal is to create a comprehensive plan from the reference information. While this does not simulate the real-world we feel that an optimization of the sole-planning capability of a travel planning agent will still be able to enhance the overall user experience. We propose a semi-automated prompt generation framework which combines the LLM-automated prompt and "human-in-the-loop" to iteratively refine the prompt to improve the LLM performance. Our result shows that LLM automated prompt has its limitations and "human-in-the-loop" greatly improves the performance by $139\%$ with one single iteration.
- Abstract(参考訳): 包括的計画エージェントは、人工知能分野における長期的な目標である。
近年の自然言語処理の革新は、Large Language Models (LLMs) の出現によって成功している。
我々は,従来の論文TravelPlannerの成果を拡張して,そのようなLCMの旅行計画能力の向上を目指す。
本研究の目的は, LLM を用いた旅行計画改善手法を検討することである。
旅行計画の「ソールプランニング」モード,すなわち,エージェントに必要な参照情報を与え,その目的は,参照情報から包括的な計画を作成することである。
これは現実世界をシミュレートするものではないが、旅行計画エージェントの単独計画能力の最適化は、ユーザーエクスペリエンス全体を強化することができるだろうと感じている。
LLM自動プロンプトと「Human-in-the-loop」を組み合わせた半自動プロンプト生成フレームワークを提案する。
以上の結果から,LLM自動プロンプトには制限があり,"Human-in-the-loop"は1回のイテレーションで139.%の大幅な性能向上を実現している。
関連論文リスト
- Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
大規模言語モデル(LLM)は、従来の自然言語処理以外の領域で顕著な成功を収めている。
LLMエージェントのプロンプトにおけるステップバイステップ命令を最適化する「段階的な降下」を行う新しい手法である textscRePrompt を提案する。
論文 参考訳(メタデータ) (2024-06-17T01:23:11Z) - TRIP-PAL: Travel Planning with Guarantees by Combining Large Language Models and Automated Planners [6.378824981027464]
伝統的なアプローチは、与えられた形式言語における問題定式化に依存している。
最近のLarge Language Model (LLM) ベースのアプローチは、言語を使用してユーザリクエストから計画を直接出力する。
LLMと自動プランナの強度を組み合わせたハイブリッド手法TRIP-PALを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:31:16Z) - NATURAL PLAN: Benchmarking LLMs on Natural Language Planning [109.73382347588417]
本稿では,3つのタスク – トリップ計画,ミーティング計画,カレンダースケジューリング – を含む,自然言語の現実的な計画ベンチマークであるNATURAL PLANを紹介する。
我々は、Google Flights、Google Maps、Google Calendarなどのツールからの出力を、モデルに対するコンテキストとして提供することによって、タスクに関する完全な情報を備えたLCMの計画能力に焦点をあてる。
論文 参考訳(メタデータ) (2024-06-06T21:27:35Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。
各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
論文 参考訳(メタデータ) (2024-02-05T04:25:24Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
この研究は、複雑な計画問題の解決におけるLLMの能力に光を当てようとしている。
この文脈で LLM を使用するための最も効果的なアプローチに関する洞察を提供する。
論文 参考訳(メタデータ) (2023-05-25T15:21:09Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z) - LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models [27.318186938382233]
本研究では,大規模言語モデル(LLM)を具体化エージェントのプランナーとして用いることに焦点を当てた。
そこで本研究では,大規模言語モデルのパワーを活かして少数ショットプランニングを行う新しい手法 LLM-Planner を提案する。
論文 参考訳(メタデータ) (2022-12-08T05:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。