論文の概要: Map2Traj: Street Map Piloted Zero-shot Trajectory Generation with Diffusion Model
- arxiv url: http://arxiv.org/abs/2407.19765v1
- Date: Mon, 29 Jul 2024 07:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:45:43.890628
- Title: Map2Traj: Street Map Piloted Zero-shot Trajectory Generation with Diffusion Model
- Title(参考訳): Map2Traj: 拡散モデルを用いたストリートマップ試験ゼロショット軌道生成
- Authors: Zhenyu Tao, Wei Xu, Xiaohu You,
- Abstract要約: 拡散モデルを利用して,新しいゼロショットトラジェクトリ生成手法であるMap2Trajを開発した。
観測されていない地域のストリートマップだけで、Map2Trajは現実世界の移動パターンによく似た合成軌道を生成する。
- 参考スコア(独自算出の注目度): 17.041443813376546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User mobility modeling serves a crucial role in analysis and optimization of contemporary wireless networks. Typical stochastic mobility models, e.g., random waypoint model and Gauss Markov model, can hardly capture the distribution characteristics of users within real-world areas. State-of-the-art trace-based mobility models and existing learning-based trajectory generation methods, however, are frequently constrained by the inaccessibility of substantial real trajectories due to privacy concerns. In this paper, we harness the intrinsic correlation between street maps and trajectories and develop a novel zero-shot trajectory generation method, named Map2Traj, by exploiting the diffusion model. We incorporate street maps as a condition to consistently pilot the denoising process and train our model on diverse sets of real trajectories from various regions in Xi'an, China, and their corresponding street maps. With solely the street map of an unobserved area, Map2Traj generates synthetic trajectories that not only closely resemble the real-world mobility pattern but also offer comparable efficacy. Extensive experiments validate the efficacy of our proposed method on zero-shot trajectory generation tasks in terms of both trajectory and distribution similarities. In addition, a case study of employing Map2Traj in wireless network optimization is presented to validate its efficacy for downstream applications.
- Abstract(参考訳): ユーザモビリティモデリングは、現代の無線ネットワークの分析と最適化において重要な役割を果たす。
典型的な確率的モビリティモデル、例えばランダムなウェイポイントモデルとガウスマルコフモデルでは、現実世界の領域におけるユーザの分布特性をほとんど捉えない。
しかし、現在最先端のトレースベースモビリティモデルと既存の学習ベーストラジェクトリ生成手法は、プライバシの懸念による実質的なトラジェクトリへのアクセスが不可能なため、しばしば制約される。
本稿では,道路地図と軌跡の内在的相関を利用して,拡散モデルを利用して,新しいゼロショット軌跡生成手法であるMap2Trajを開発した。
道路地図は,中国・西安の様々な地域やそれに対応する街路地図から,絶え間なくデノナイジング過程を操縦し,様々な実軌道上でモデルを訓練するための条件として組み込まれている。
Map2Trajは、観測されていない領域のストリートマップのみを用いて、現実世界のモビリティパターンによく似ているだけでなく、同等の有効性を提供する合成軌道を生成する。
トラジェクトリと分布の類似性の両方の観点から,提案手法がゼロショットトラジェクトリ生成タスクに与える影響を検証した。
さらに,無線ネットワーク最適化におけるMap2Trajの利用事例を,下流アプリケーションの有効性を検証するために提示した。
関連論文リスト
- Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
軌道表現学習は、スマートシティや都市計画など分野の応用における基本的な課題である。
本稿では,時間的ダイナミクスを取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
実世界の2つのデータセット上でTIGRを評価し,両モードの組み合わせの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-21T10:56:02Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
本稿では,交通地図に依存しない効率的な軌道予測モデルを提案する。
注意機構、LSTM、グラフ畳み込みネットワーク、時間変換器を包括的に活用することにより、我々のモデルは全てのエージェントのリッチな動的および相互作用情報を学習することができる。
提案モデルでは,既存のマップフリー手法と比較して高い性能を達成し,Argoverseデータセット上のほとんどのマップベース最先端手法を超越する。
論文 参考訳(メタデータ) (2023-07-19T08:36:31Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
本稿では,道路網上の連続軌道を生成するために,新たな2段階生成対向フレームワークを提案する。
具体的には、A*アルゴリズムの人間の移動性仮説に基づいてジェネレータを構築し、人間の移動性について学習する。
判別器では, 逐次報酬と移動ヤウ報酬を組み合わせることで, 発電機の有効性を高める。
論文 参考訳(メタデータ) (2023-01-16T09:54:02Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - DouFu: A Double Fusion Joint Learning Method For Driving Trajectory
Representation [13.321587117066166]
軌道表現型共同学習のための新しい多モード融合モデルDouFuを提案する。
まず、軌道データと都市機能ゾーンから生成された動き、経路、グローバルな特徴を設計する。
グローバルなセマンティック機能により、DouFuは各行に対して包括的な埋め込みを生成する。
論文 参考訳(メタデータ) (2022-05-05T07:43:35Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
軌道予測のための自己教師付き事前学習方式であるPreTraMを提案する。
1) トラジェクティブ・マップ・コントラクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)の2つのパートから構成される。
AgentFormerやTrajectron++といった一般的なベースラインに加えて、PreTraMは、挑戦的なnuScenesデータセット上で、FDE-10でパフォーマンスを5.5%と6.9%向上させる。
論文 参考訳(メタデータ) (2022-04-21T23:01:21Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
歩行者等の軌道予測は,自律型エージェントの性能向上に不可欠である。
本稿では分割結合を利用した新しいハールウェーブレットに基づくブロック自己回帰モデルを提案する。
実世界の2つのデータセット上で、多種多様な正確な軌跡を生成するアプローチの利点について説明する。
論文 参考訳(メタデータ) (2020-09-21T13:57:10Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
本研究は,都市自動車軌跡データの基礎的分布を学習するための生成的モデリング手法を提案する。
都市部における車両軌跡生成モデルは,トレーニングデータの基盤となる分布を学習することにより,トレーニングデータからより一般化することができる。
TrajGAILは、都市自動車軌道生成のための生成的対向的模倣学習フレームワークである。
論文 参考訳(メタデータ) (2020-07-28T13:17:51Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
自動運転パズルの最も重要なピースの1つは、周囲の交通機関の将来の動きを予測するタスクである。
一方はトップダウンのシーン化と他方はGAN(Generative Adrial Networks)に基づく手法が特に成功したことが示されている。
本稿では,これら2つの方向に基づいて,Aversa-based conditional GANアーキテクチャを提案する。
提案手法を実世界の大規模データセット上で評価し,最先端のGANベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-14T00:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。