論文の概要: Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics
- arxiv url: http://arxiv.org/abs/2411.14014v1
- Date: Thu, 21 Nov 2024 10:56:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:18:33.463934
- Title: Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics
- Title(参考訳): 時空間ダイナミクスを用いた道路網と格子の軌道表現学習
- Authors: Stefan Schestakov, Simon Gottschalk,
- Abstract要約: 軌道表現学習は、スマートシティや都市計画など分野の応用における基本的な課題である。
本稿では,時間的ダイナミクスを取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
実世界の2つのデータセット上でTIGRを評価し,両モードの組み合わせの有効性を実証した。
- 参考スコア(独自算出の注目度): 0.8655526882770742
- License:
- Abstract: Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning, as it facilitates the utilization of trajectory data (e.g., vehicle movements) for various downstream applications, such as trajectory similarity computation or travel time estimation. This is achieved by learning low-dimensional representations from high-dimensional and raw trajectory data. However, existing methods for trajectory representation learning either rely on grid-based or road-based representations, which are inherently different and thus, could lose information contained in the other modality. Moreover, these methods overlook the dynamic nature of urban traffic, relying on static road network features rather than time varying traffic patterns. In this paper, we propose TIGR, a novel model designed to integrate grid and road network modalities while incorporating spatio-temporal dynamics to learn rich, general-purpose representations of trajectories. We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities by substantially outperforming state-of-the-art methods, i.e., up to 43.22% for trajectory similarity, up to 16.65% for travel time estimation, and up to 10.16% for destination prediction.
- Abstract(参考訳): 軌道表現学習は、軌道類似性計算や走行時間推定など、様々な下流アプリケーションにおける軌道データ(例えば車両の動き)の利用を容易にするため、スマートシティや都市計画などの分野の応用における基本的な課題である。
これは高次元および生の軌跡データから低次元表現を学習することで達成される。
しかし、既存の軌跡表現学習法は、グリッドベースまたは道路ベースの表現に依存しており、これは本質的に異なるため、他のモダリティに含まれる情報を失う可能性がある。
さらに,これらの手法は交通パターンの時間的変化よりも静的な道路網の特徴に頼って,都市交通の動的な性質を見落としている。
本稿では,軌跡のリッチで汎用的な表現を学習するための時空間力学を取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
我々は,2つの実世界のデータセット上でTIGRを評価し,トラジェクトリ類似度を最大43.22%,旅行時間推定を最大16.65%,目的地予測を最大10.16%に向上させることにより,両モードの組み合わせの有効性を実証した。
関連論文リスト
- Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models [27.316692263196277]
MVTrajは、軌道表現学習のための新しい多視点モデリング手法である。
GPSから道路網、関心点まで多様な文脈知識を統合し、軌跡データのより包括的な理解を提供する。
実世界のデータセットに対する大規模な実験により、MVTrajは様々な空間ビューに関連するタスクにおいて、既存のベースラインを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-10-17T03:56:12Z) - Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics [33.940044533340235]
道路網の汎用表現を学習するためのToastという新しいフレームワークと、その先進的なDyToastを紹介する。
具体的には,交通パターンと走行意味論という,道路ネットワークに固有の2つの重要な意味的特徴を符号化することを提案する。
提案するフレームワークは,最先端のベースラインを大きなマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-03-18T05:59:56Z) - Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics [30.9735101687326]
Trajectory Representation Learning (TRL) は空間時間データ分析と管理のための強力なツールである。
既存のTRLの作業は通常、トラジェクトリを通常のシーケンスデータとして扱うが、時間的規則性や旅行意味論といった重要な時空間特性は、完全には利用されない。
本稿では,TemporAl規則と旅行意味論,すなわちSTARTを用いた自己教師付き軌道表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-17T13:14:47Z) - Jointly Contrastive Representation Learning on Road Network and
Trajectory [11.613962590641002]
道路網と軌道表現学習は交通システムにとって不可欠である。
既存の方法では、道路網と軌道を別々に扱うなど、同じスケールでしかコントラストがない。
本稿では,道路網と軌道表現を両立させる統合フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T03:08:20Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
本稿では,空間的動的相互作用グラフ(SDG)と行動依存グラフ(BDG)を用いて,交通信号に対する軌道予測手法D2-TPredを提案する。
実験の結果,VTP-TLではADEとFDEでそれぞれ20.45%,20.78%以上を達成できた。
論文 参考訳(メタデータ) (2022-07-21T10:19:07Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Spatial-Temporal Dual Graph Neural Networks for Travel Time Estimation [5.614908141182951]
時空間デュアルグラフニューラルネットワーク(STDGNN)を用いた旅行時間推定のためのグラフベースディープラーニングフレームワークを提案する。
まず,交差点と道路セグメントの複雑な相関関係を捉えるために,時空間二重グラフアーキテクチャを構築した。
交差点と道路セグメントの連立時空間ダイナミクスを捉えるために,空間時空間学習層を採用する。
論文 参考訳(メタデータ) (2021-05-28T05:15:45Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。