Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems
- URL: http://arxiv.org/abs/2407.19766v1
- Date: Mon, 29 Jul 2024 07:57:59 GMT
- Title: Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems
- Authors: Shuai Li, Min Liu, Yue Zhang, Rui Tian, Maksims Arzamasovs, Bo Liu,
- Abstract summary: We present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems.
Our results reveal a profound connection between the symmetry and the fate of NHSE.
- Score: 20.4728241808175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Hermitian skin effect (NHSE), an anomalous localization behavior of the bulk states, is an inherently non-Hermitian phenomenon, which can not find a counterpart in Hermitian systems. However, the fragility of NHSE has been revealed recently, such as the boundary sensitivity, and it stimulates a lot of studies on discussing the fate of that. Here we present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems to determine whether the NHSE can exist or not. Distinct from previous studies, our proposed criterion only relies on analyzing the symmetry of the system, freeing out other requirements, such as the information of the energy spectrum. Furthermore, by taking the non-Hermitian Kitaev chain as an example, we verify our theorem through both a mathematical proof via the non-Bloch band theory and the exact diagonalization numerical studies. Our results reveal a profound connection between the symmetry and the fate of NHSE.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - A Measure-Theoretic Axiomatisation of Causality [55.6970314129444]
We argue in favour of taking Kolmogorov's measure-theoretic axiomatisation of probability as the starting point towards an axiomatisation of causality.
Our proposed framework is rigorously grounded in measure theory, but it also sheds light on long-standing limitations of existing frameworks.
arXiv Detail & Related papers (2023-05-19T13:15:48Z) - Activating non-Hermitian skin modes by parity-time symmetry breaking [2.2230089845369094]
We propose $mathcalPT$ symmetry as a paradigm for designing rich families of higher-dimensional non-Hermitian states.
We selectively activate or manipulate the non-Hermitian skin effect (NHSE) in both the bulk and topological boundary states.
Our results extend richly into 3D or higher, with more sophisticated interplay with selective bulk and boundary NHSE and charge-parity symmetry.
arXiv Detail & Related papers (2023-04-27T05:09:43Z) - Parsing skin effect in a non-Hermitian spinless BHZ-like model [0.0]
This work comprehensively investigates the non-Hermitian skin effect (NHSE) in a spinless Bernevig- Hughes-Zhang (BHZ)-like model in one dimension.
We show that there are exceptions, and more in-depth analyses are required to decode the presence of NHSE or its variants in a system.
arXiv Detail & Related papers (2023-04-25T11:12:56Z) - Symmetric non-Hermitian skin effect with emergent nonlocal
correspondence [10.704938459679978]
The non-Hermitian skin effect (NHSE) refers to that an extensive number of eigenstates of a non-Hermitian system are localized in open boundaries.
Here we predict a universal phenomenon that with local particle-hole(-like) symmetry the skin modes must be equally distributed on different boundaries.
We develop a generic theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an extended Hermitian Hamiltonian in aruplicate Hilbert space.
arXiv Detail & Related papers (2023-02-26T02:37:55Z) - Symmetry-protected exceptional and nodal points in non-Hermitian systems [0.0]
We show that NH systems may host two types of degeneracies, namely, non-defective EPs and ordinary (Hermitian) nodal points.
We demonstrate that certain discrete symmetries, namely parity-time, parity-particle-hole, and pseudo-Hermitian symmetry, guarantee the occurrence of both defective and non-defective EPs.
arXiv Detail & Related papers (2022-04-29T08:42:26Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Topological properties of non-Hermitian Creutz Ladders [0.0]
We study topological properties of the one-dimensional Creutz ladder model with different non-Hermitian asymmetric hoppings and on-site imaginary potentials.
The non-Hermitian skin effect (NHSE) emerges in the system only when the non-Hermiticity induces certain unbalanced non-reciprocity along the ladder.
arXiv Detail & Related papers (2021-08-29T12:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.