論文の概要: ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation
- arxiv url: http://arxiv.org/abs/2407.19835v1
- Date: Mon, 29 Jul 2024 09:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:25:55.196463
- Title: ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation
- Title(参考訳): ATHAR: 古典アラビア語から英語への翻訳のための高品質・多言語データセット
- Authors: Mohammed Khalil, Mohammed Sabry,
- Abstract要約: 古典アラビア語は重要な時代であり、アラブ文化、哲学、科学文学の黄金時代を包含している。
我々は古典アラビア語の翻訳データセットが不足していることを特定し、スコープやトピックに制限されることが多い。
ATHARデータセットは66,000の高品質のアラビア語から英語への翻訳サンプルからなる。
- 参考スコア(独自算出の注目度): 1.8109081066789847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical Arabic represents a significant era, encompassing the golden age of Arab culture, philosophy, and scientific literature. With a broad consensus on the importance of translating these literatures to enrich knowledge dissemination across communities, the advent of large language models (LLMs) and translation systems offers promising tools to facilitate this goal. However, we have identified a scarcity of translation datasets in Classical Arabic, which are often limited in scope and topics, hindering the development of high-quality translation systems. In response, we present the ATHAR dataset, comprising 66,000 high-quality Classical Arabic to English translation samples that cover a wide array of subjects including science, culture, and philosophy. Furthermore, we assess the performance of current state-of-the-art LLMs under various settings, concluding that there is a need for such datasets in current systems. Our findings highlight how models can benefit from fine-tuning or incorporating this dataset into their pretraining pipelines. The dataset is publicly available on the HuggingFace Data Hub at \url{https://huggingface.co/datasets/mohamed-khalil/ATHAR}.
- Abstract(参考訳): 古典アラビア語は重要な時代であり、アラブ文化、哲学、科学文学の黄金時代を包含している。
コミュニティ間の知識の普及を促進するためにこれらの文献を翻訳することの重要性について広く合意された上で、大きな言語モデル(LLM)と翻訳システムの出現は、この目標を促進するための有望なツールを提供する。
しかし、古典アラビア語における翻訳データセットの不足は、しばしばスコープやトピックに制限されているため、高品質な翻訳システムの開発を妨げている。
ATHARデータセットは、66,000の高品質のアラビア語から英語への翻訳サンプルから構成され、科学、文化、哲学など幅広い分野をカバーする。
さらに,現状のLCMの性能を様々な設定で評価し,現在のシステムにそのようなデータセットが必要であると結論づけた。
私たちの研究結果は、データセットをトレーニング済みのパイプラインに微調整したり、組み込んだりすることで、モデルがどのようにメリットを享受できるかを強調しています。
データセットは、HuggingFace Data Hub at \url{https://huggingface.co/datasets/mohamed-khalil/ATHAR}で公開されている。
関連論文リスト
- A Survey of Large Language Models for Arabic Language and its Dialects [0.0]
本調査では、アラビア語とその方言用に設計されたLarge Language Models(LLM)の概要について概説する。
Encoder-only、decoder-only、encoder-decoderモデルを含む主要なアーキテクチャと、事前トレーニングに使用されるデータセットをカバーしている。
この研究では、下流タスクのアーキテクチャとパフォーマンスを分析し、モノリンガル、バイリンガル、マルチリンガルのLLMについても検討している。
論文 参考訳(メタデータ) (2024-10-26T17:48:20Z) - AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs [22.121471902726892]
本稿ではアラビア方言と文化評価のベンチマークであるAraDiCEを紹介する。
湾岸地域、エジプト地域、レバント地域の文化意識を評価するために設計された最初のきめ細かいベンチマーク。
本研究で検証した方言翻訳モデルとベンチマークをリリースする。
論文 参考訳(メタデータ) (2024-09-17T17:59:25Z) - A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts [8.405938712823563]
本稿では,3000以上の文書からなる多レベル多言語テキスト分類データセットを提案する。
このデータセットは19世紀のトルコ語とロシア語の文学的および批判的なテキストを特徴としている。
このデータセットに大規模言語モデル(LLM)を適用した最初の研究である。
論文 参考訳(メタデータ) (2024-07-21T12:14:45Z) - GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
InstAr-500kは、コンテンツの生成と収集によって生成された新しいアラビア文字の命令データセットである。
我々は,オープンソースのGemma-7Bモデルを下流タスクで微調整し,その機能を改善することにより,このデータセットを評価する。
複数の評価結果に基づき, アラビアNLPベンチマークにおいて, 微調整モデルにより優れた性能が得られた。
論文 参考訳(メタデータ) (2024-07-02T10:43:49Z) - 101 Billion Arabic Words Dataset [0.0]
本研究の目的は、アラブ世界のデータ不足に対処し、アラビア語モデルの開発を促進することである。
我々は大規模なデータマイニングプロジェクトを行い、Common Crawl WETファイルから大量のテキストを抽出した。
抽出されたデータは、データセットの完全性とユニーク性を保証するために革新的な技術を用いて、厳密なクリーニングと重複処理が行われた。
論文 参考訳(メタデータ) (2024-04-29T13:15:03Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
アラビア語における最初のマルチタスク言語理解ベンチマークである、データセット名を提案する。
我々のデータは、現代標準アラビア語(MSA)における40のタスクと14,575のマルチチョイス質問で構成されており、地域の母語話者と協調して慎重に構築されている。
35モデルについて評価した結果,特にオープンソースモデルにおいて,改善の余地がかなり高いことが判明した。
論文 参考訳(メタデータ) (2024-02-20T09:07:41Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
本稿では,アラビア語のテキストによる事前学習,ネイティブなアラビア語命令を利用したSFT(Supervised Fine-Tuning),アラビア語のGPT-4応答を含む総合的なソリューションを提案する。
目標は、文化的に認知され、価値に整合したアラビア語のLLMを、多様で応用特有のアラビア語コミュニティのニーズに適応させることである。
論文 参考訳(メタデータ) (2023-09-21T13:20:13Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - New Arabic Medical Dataset for Diseases Classification [55.41644538483948]
いくつかのアラブの医療ウェブサイトから収集された2000の医療資料を含む、アラブの医療データセットを新たに導入する。
データセットはテキストの分類作業のために構築され、10つのクラス(Blood, Bone, Cardiovascular, Ear, Endocrine, Eye, Gastrointestinal, Immune, Liver, Nephrological)を含んでいる。
データセットの実験は、GoogleのBERT、大きなアラビアのコーパスを持つBERTに基づくアラビアト、アラビアの医療コーパスをベースとしたAraBioNERの3つの事前トレーニングモデルによって行われた。
論文 参考訳(メタデータ) (2021-06-29T10:42:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。