Deep Image Priors for Magnetic Resonance Fingerprinting with pretrained Bloch-consistent denoising autoencoders
- URL: http://arxiv.org/abs/2407.19866v1
- Date: Mon, 29 Jul 2024 10:35:39 GMT
- Title: Deep Image Priors for Magnetic Resonance Fingerprinting with pretrained Bloch-consistent denoising autoencoders
- Authors: Perla Mayo, Matteo Cencini, Ketan Fatania, Carolin M. Pirkl, Marion I. Menzel, Bjoern H. Menze, Michela Tosetti, Mohammad Golbabaee,
- Abstract summary: We propose a method that combines a deep image prior (DIP) module that, without ground truth and in conjunction with a Bloch consistency enforcing autoencoder, can tackle the problem.
- Score: 3.3030630199962414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of multi-parametric quantitative maps from Magnetic Resonance Fingerprinting (MRF) compressed sampled acquisitions, albeit successful, remains a challenge due to the high underspampling rate and artifacts naturally occuring during image reconstruction. Whilst state-of-the-art DL methods can successfully address the task, to fully exploit their capabilities they often require training on a paired dataset, in an area where ground truth is seldom available. In this work, we propose a method that combines a deep image prior (DIP) module that, without ground truth and in conjunction with a Bloch consistency enforcing autoencoder, can tackle the problem, resulting in a method faster and of equivalent or better accuracy than DIP-MRF.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Robust Simultaneous Multislice MRI Reconstruction Using Deep Generative Priors [4.23798859509348]
Simultaneous multislice (SMS) imaging is a powerful technique for accelerating magnetic resonance imaging (MRI) acquisitions.
This study presents a robust SMS MRI reconstruction method using deep generative priors.
arXiv Detail & Related papers (2024-07-31T13:34:14Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Improving Adversarial Robustness of Masked Autoencoders via Test-time
Frequency-domain Prompting [133.55037976429088]
We investigate the adversarial robustness of vision transformers equipped with BERT pretraining (e.g., BEiT, MAE)
A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods.
We propose a simple yet effective way to boost the adversarial robustness of MAE.
arXiv Detail & Related papers (2023-08-20T16:27:17Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
We propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs)
We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image.
We further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.
arXiv Detail & Related papers (2023-04-09T21:10:39Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
Diffusion Probabilistic Models (DPMs) have been employed for image deblurring.
We introduce a simple yet effective multiscale structure guidance as an implicit bias.
We demonstrate more robust deblurring results with fewer artifacts on unseen data.
arXiv Detail & Related papers (2022-12-04T10:40:35Z) - Nonlinear Equivariant Imaging: Learning Multi-Parametric Tissue Mapping
without Ground Truth for Compressive Quantitative MRI [4.576908868578682]
Current state-of-the-art reconstruction for quantitative tissue maps from fast compressive Fingerprint, Magnetic Resonanceing (MRF)
Use supervised deep learning with the drawback of requiring high-fidelity ground truth tissue map training data which is limited.
This paper proposes a self-supervised learning approach to eliminate the need for ground truth deep MRF image reconstruction.
arXiv Detail & Related papers (2022-11-23T09:04:14Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - When deep denoising meets iterative phase retrieval [5.639904484784126]
Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data.
Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising.
The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms.
arXiv Detail & Related papers (2020-03-03T21:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.