論文の概要: Robust Conformal Volume Estimation in 3D Medical Images
- arxiv url: http://arxiv.org/abs/2407.19938v1
- Date: Mon, 29 Jul 2024 12:18:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:56:27.246773
- Title: Robust Conformal Volume Estimation in 3D Medical Images
- Title(参考訳): 3次元医用画像におけるロバストな等角体積推定
- Authors: Benjamin Lambert, Florence Forbes, Senan Doyle, Michel Dojat,
- Abstract要約: ボリュームトリは3次元医用画像セグメンテーションの主要な下流応用の1つである。
セグメンテーションモデルにより生成された圧縮潜在表現に基づく密度比推定の効率的な手法を提案する。
- 参考スコア(独自算出の注目度): 0.5799785223420274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Volumetry is one of the principal downstream applications of 3D medical image segmentation, for example, to detect abnormal tissue growth or for surgery planning. Conformal Prediction is a promising framework for uncertainty quantification, providing calibrated predictive intervals associated with automatic volume measurements. However, this methodology is based on the hypothesis that calibration and test samples are exchangeable, an assumption that is in practice often violated in medical image applications. A weighted formulation of Conformal Prediction can be framed to mitigate this issue, but its empirical investigation in the medical domain is still lacking. A potential reason is that it relies on the estimation of the density ratio between the calibration and test distributions, which is likely to be intractable in scenarios involving high-dimensional data. To circumvent this, we propose an efficient approach for density ratio estimation relying on the compressed latent representations generated by the segmentation model. Our experiments demonstrate the efficiency of our approach to reduce the coverage error in the presence of covariate shifts, in both synthetic and real-world settings. Our implementation is available at https://github.com/benolmbrt/wcp_miccai
- Abstract(参考訳): ボリュームトリは、例えば、異常な組織の成長を検知したり、手術計画のために、3次元の医用画像セグメンテーションの主要な下流の応用の1つである。
コンフォーマル予測は不確実性定量化のための有望なフレームワークであり、自動体積測定に関連するキャリブレーションされた予測間隔を提供する。
しかし、この手法は校正とテストサンプルが交換可能であるという仮説に基づいている。
整形予測の重み付けによる定式化はこの問題を軽減するために行われるが、医療領域における実証研究はいまだに不足している。
潜在的な理由は、キャリブレーションとテスト分布の密度比の推定に依存するためであり、これは高次元データを含むシナリオでは難解である可能性が高い。
これを回避するために,分割モデルにより生成された圧縮潜在表現に依存する密度比推定手法を提案する。
本実験は,共変量シフトの存在下での被覆誤差を,合成環境と実環境の両方で低減する手法の有効性を実証するものである。
私たちの実装はhttps://github.com/benolmbrt/wcp_miccaiで利用可能です。
関連論文リスト
- A conformalized learning of a prediction set with applications to medical imaging classification [14.304858613146536]
本稿では,真のラベルを含む予測セットをユーザが特定した確率で生成するアルゴリズムを提案する。
提案アルゴリズムをいくつかの標準医用画像分類データセットに適用した。
論文 参考訳(メタデータ) (2024-08-09T12:49:04Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Probabilistic 3D segmentation for aleatoric uncertainty quantification
in full 3D medical data [7.615431940103322]
正規化フローを付加した3次元確率的セグメンテーションフレームワークを開発した。
私たちは初めて、0.401の3D角形一般エネルギー距離(GED)と、高い0.468のハンガリー製の3D IoUを提示しました。
論文 参考訳(メタデータ) (2023-05-01T17:19:20Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Multi-hypothesis 3D human pose estimation metrics favor miscalibrated
distributions [3.8575800313102806]
よく校正された分布は曖昧さを明確にし、下流のタスクの不確実性を維持することができる。
誤校正は、minMPJPEなどのサンプルベースメトリクスの使用によるものである。
この問題を軽減するために,条件付きグラフ正規化フロー (CGNF) と呼ばれる,精度よく校正されたモデルを提案する。
論文 参考訳(メタデータ) (2022-10-20T11:47:07Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - On the relationship between calibrated predictors and unbiased volume
estimation [18.96093589337619]
機械学習による医用画像のセグメンテーションは、医用画像解析において標準となっている。
しかし、ディープラーニングモデルは、過度に自信過剰な予測をしがちである。
これにより、医療画像とより広い機械学習コミュニティの調整された予測に、新たな焦点が当てられた。
論文 参考訳(メタデータ) (2021-12-23T14:22:19Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。