More precise edge detections
- URL: http://arxiv.org/abs/2407.19992v3
- Date: Wed, 2 Oct 2024 10:24:45 GMT
- Title: More precise edge detections
- Authors: Hao Shu,
- Abstract summary: Edge detection (ED) is a base task in computer vision.
Current models still suffer from unsatisfactory precision rates.
Model architecture for more precise predictions still needs an investigation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image Edge detection (ED) is a base task in computer vision. While the performance of the ED algorithm has been improved greatly by introducing CNN-based models, current models still suffer from unsatisfactory precision rates especially when only a low error toleration distance is allowed. Therefore, model architecture for more precise predictions still needs an investigation. On the other hand, the unavoidable noise training data provided by humans would lead to unsatisfactory model predictions even when inputs are edge maps themselves, which also needs a solution. In this paper, more precise ED models are presented with cascaded skipping density blocks (CSDB). Our models obtain state-of-the-art(SOTA) predictions in several datasets, especially in average precision rate (AP), over a high-standard benchmark, which is confirmed by extensive experiments. Also, a novel modification on data augmentation for training is employed, which allows noiseless data to be employed in model training for the first time, and thus further improves the model performance. The relative Python codes can be found on https://github.com/Hao-B-Shu/SDPED.
Related papers
- NUDGE: Lightweight Non-Parametric Fine-Tuning of Embeddings for Retrieval [0.7646713951724011]
Existing approaches either fine-tune the pre-trained model itself or, more efficiently, train adaptor models to transform the output of the pre-trained model.
We present NUDGE, a family of novel non-parametric embedding fine-tuning approaches.
NUDGE directly modifies the embeddings of data records to maximize the accuracy of $k$-NN retrieval.
arXiv Detail & Related papers (2024-09-04T00:10:36Z) - Source-Free Test-Time Adaptation For Online Surface-Defect Detection [29.69030283193086]
We propose a novel test-time adaptation surface-defect detection approach.
It adapts pre-trained models to new domains and classes during inference.
Experiments demonstrate it outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-08-18T14:24:05Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Incremental Outlier Detection Modelling Using Streaming Analytics in
Finance & Health Care [0.0]
We identified that there is highly necessity to have the streaming models to tackle the streaming data.
The objective of this project is to study and analyze the importance of streaming models which is applicable in the real-world environment.
arXiv Detail & Related papers (2023-05-17T02:30:28Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
We propose a novel method called ALUM to handle the model uncertainty and data uncertainty in a unified scheme.
Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra overhead.
arXiv Detail & Related papers (2023-03-29T17:24:12Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.