Incremental Outlier Detection Modelling Using Streaming Analytics in
Finance & Health Care
- URL: http://arxiv.org/abs/2305.09907v1
- Date: Wed, 17 May 2023 02:30:28 GMT
- Title: Incremental Outlier Detection Modelling Using Streaming Analytics in
Finance & Health Care
- Authors: Ch Priyanka, Vivek
- Abstract summary: We identified that there is highly necessity to have the streaming models to tackle the streaming data.
The objective of this project is to study and analyze the importance of streaming models which is applicable in the real-world environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we had built the online model which are built incrementally by
using online outlier detection algorithms under the streaming environment. We
identified that there is highly necessity to have the streaming models to
tackle the streaming data. The objective of this project is to study and
analyze the importance of streaming models which is applicable in the
real-world environment. In this work, we built various Outlier Detection (OD)
algorithms viz., One class Support Vector Machine (OC-SVM), Isolation Forest
Adaptive Sliding window approach (IForest ASD), Exact Storm, Angle based
outlier detection (ABOD), Local outlier factor (LOF), KitNet, KNN ASD methods.
The effectiveness and validity of the above-built models on various finance
problems such as credit card fraud detection, churn prediction, ethereum fraud
prediction. Further, we also analyzed the performance of the models on the
health care prediction problems such as heart stroke prediction, diabetes
prediction and heart stroke prediction problems. As per the results and dataset
it shows that it performs well for the highly imbalanced datasets that means
there is a majority of negative class and minority will be the positive class.
Among all the models, the ensemble model strategy IForest ASD model performed
better in most of the cases standing in the top 3 models in almost all of the
cases.
Related papers
- More precise edge detections [0.0]
Edge detection (ED) is a base task in computer vision.
Current models still suffer from unsatisfactory precision rates.
Model architecture for more precise predictions still needs an investigation.
arXiv Detail & Related papers (2024-07-29T13:24:55Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Compound Density Networks for Risk Prediction using Electronic Health
Records [1.1786249372283562]
We propose an integrated end-to-end approach by utilizing a Compound Density Network (CDNet)
CDNet allows the imputation method and prediction model to be tuned together within a single framework.
We validate CDNet on the mortality prediction task on the MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-02T09:04:20Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Black-box Adversarial Attacks on Network-wide Multi-step Traffic State
Prediction Models [4.353029347463806]
We propose an adversarial attack framework by treating the prediction model as a black-box.
The adversary can oracle the prediction model with any input and obtain corresponding output.
To test the attack effectiveness, two state of the art, graph neural network-based models (GCGRNN and DCRNN) are examined.
arXiv Detail & Related papers (2021-10-17T03:45:35Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.