A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph
- URL: http://arxiv.org/abs/2407.19994v3
- Date: Fri, 13 Sep 2024 12:19:26 GMT
- Title: A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph
- Authors: Cheonsu Jeong,
- Abstract summary: This study implements an advanced RAG system based on Graph technology to develop high-quality generative AI services.
It employs LangGraph to evaluate the reliability of retrieved information and synthesizes diverse data to generate more accurate and enhanced responses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study aims to improve knowledge-based question-answering (QA) systems by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an advanced RAG system based on Graph technology to develop high-quality generative AI services. While existing RAG models demonstrate high accuracy and fluency by utilizing retrieved information, they may suffer from accuracy degradation as they generate responses using pre-loaded knowledge without reprocessing. Additionally, they cannot incorporate real-time data after the RAG configuration stage, leading to issues with contextual understanding and biased information. To address these limitations, this study implemented an enhanced RAG system utilizing Graph technology. This system is designed to efficiently search and utilize information. Specifically, it employs LangGraph to evaluate the reliability of retrieved information and synthesizes diverse data to generate more accurate and enhanced responses. Furthermore, the study provides a detailed explanation of the system's operation, key implementation steps, and examples through implementation code and validation results, thereby enhancing the understanding of advanced RAG technology. This approach offers practical guidelines for implementing advanced RAG systems in corporate services, making it a valuable resource for practical application.
Related papers
- Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.
Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.
Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval [2.749898166276854]
This paper introduces an innovative approach using Retrieval-Augmented Generation (RAG) pipelines with Large Language Models (LLMs)
By systematically extracting data from the university official webpage, we generate accurate, contextually relevant responses to user queries.
Our experimental results demonstrate significant improvements in the precision and relevance of generated responses.
arXiv Detail & Related papers (2024-11-09T17:38:01Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
Retrieval-Augmented Generation (RAG) has emerged as a paradigm to address such challenges.
RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores.
In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios.
arXiv Detail & Related papers (2024-02-29T18:59:01Z) - DNS-Rec: Data-aware Neural Architecture Search for Recommender Systems [79.76519917171261]
This paper addresses the computational overhead and resource inefficiency prevalent in Sequential Recommender Systems (SRSs)
We introduce an innovative approach combining pruning methods with advanced model designs.
Our principal contribution is the development of a Data-aware Neural Architecture Search for Recommender System (DNS-Rec)
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
Large Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination.
Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases.
arXiv Detail & Related papers (2023-12-18T07:47:33Z) - A Study on the Implementation of Generative AI Services Using an
Enterprise Data-Based LLM Application Architecture [0.0]
This study presents a method for implementing generative AI services by utilizing the Large Language Models (LLM) application architecture.
The research delves into strategies for mitigating the issue of inadequate data, offering tailored solutions.
A significant contribution of this work is the development of a Retrieval-Augmented Generation (RAG) model.
arXiv Detail & Related papers (2023-09-03T07:03:17Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.