論文の概要: ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning
- arxiv url: http://arxiv.org/abs/2407.20020v1
- Date: Mon, 29 Jul 2024 13:57:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-30 13:34:43.364098
- Title: ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning
- Title(参考訳): ImagiNet:コントラスト学習による一般化可能な合成画像検出のためのマルチコンテンツデータセット
- Authors: Delyan Boychev, Radostin Cholakov,
- Abstract要約: 生成モデルは、実際の写真やアートワークとほとんど区別がつかない、信頼性の高い画像を生成する。
合成画像の識別が困難であるため、オンラインメディアプラットフォームは偽造や誤情報に脆弱である。
合成画像検出のための高分解能かつバランスの取れたデータセットであるImagiNetを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models, such as diffusion models (DMs), variational autoencoders (VAEs), and generative adversarial networks (GANs), produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. While this capability is beneficial for many industries, the difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts. To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200K examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track. The model demonstrates state-of-the-art performance and high inference speed across established benchmarks, achieving an AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under social network conditions that involve compression and resizing. Our data and code are available at https://github.com/delyan-boychev/imaginet.
- Abstract(参考訳): 拡散モデル(DM)、変分オートエンコーダ(VAE)、生成逆数ネットワーク(GAN)などの生成モデルは、実際の写真やアートワークとほとんど区別できないような、信頼度の高い画像を生成する。
この能力は多くの業界にとって有益であるが、合成画像の識別が困難であるため、オンラインメディアプラットフォームは偽造や誤情報による攻撃に弱い。
防衛手法の開発を支援するため,既存の資源の潜在的なバイアスを軽減するために,合成画像検出のための高解像度かつバランスの取れたデータセットであるImagiNetを紹介した。
その中には、写真、絵画、顔、そして非分類の4つのカテゴリーにまたがる200万のサンプルが含まれている。
合成画像はオープンソースおよびプロプライエタリなジェネレータで生成されるが、同じコンテンツタイプの実際の画像はパブリックデータセットから収集される。
ImagiNetの構造は、以下の2トラック評価システムを可能にする。
一 実物又は合成物として分類し、
二 生成モデルを特定すること。
ベースラインを確立するために,トラック毎に自己教師付きコントラスト目標(SelfCon)を用いてResNet-50モデルを訓練する。
このモデルは、既存のベンチマークにおける最先端性能と高い推論速度を示し、圧縮と再サイズを含むソーシャルネットワーク条件下であっても、最大0.99のAUCと86%から95%のバランスの取れた精度を達成する。
私たちのデータとコードはhttps://github.com/delyan-boychev/imaginet.comで公開されています。
関連論文リスト
- CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
実際の画像とAI生成画像を区別する現在の取り組みには、一般化が欠如している可能性がある。
既存のセマンティック機能を強化した新しいフレームワークCo-Spyを提案する。
また、5つの実画像データセットと22の最先端生成モデルからなる包括的データセットであるCo-Spy-Benchを作成します。
論文 参考訳(メタデータ) (2025-03-24T01:59:29Z) - Re-assessing ImageNet: How aligned is its single-label assumption with its multi-label nature? [1.4828022319975973]
我々は、ImageNetとその変種であるImageNetV2上で、事前訓練された最先端ディープニューラルネットワーク(DNN)モデルの有効性を分析する。
以上の結果から,これらの報告された減少は,十分な注意が払われていないデータセットの特徴に起因することが示唆された。
この結果は,ベンチマーク中のImageNetデータセットのマルチラベル性を考慮することの重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-12-24T12:55:31Z) - Low-Biased General Annotated Dataset Generation [62.04202037186855]
低バイアスの一般アノテーション付きデータセット生成フレームワーク(lbGen)を提案する。
高価な手作業による収集ではなく,カテゴリアノテーションを用いた低バイアス画像を直接生成することを目的としている。
実験結果から,手動ラベル付きデータセットや他の合成データセットと比較して,生成した低バイアスデータセットの利用により,一般化能力の安定が図られた。
論文 参考訳(メタデータ) (2024-12-14T13:28:40Z) - Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline [3.524869467682149]
安定拡散を用いた合成画像データセットの自動生成パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
論文 参考訳(メタデータ) (2024-06-03T07:44:08Z) - SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods [9.213926755375024]
完全合成画像の作成は、ユニークな課題である。
ベンチマークデータセットの実験結果と、ワイルドなメソッドのパフォーマンスの間には、大きなギャップがしばしばあります。
本稿では,いくつかの最先端SIDモデルを統合するベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-29T09:50:16Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
我々は、深層モデルの堅牢性をベンチマークするハードイメージのためのデータソースとして、生成モデルを紹介した。
このベンチマークを ImageNet-D と呼ぶ以前の作業よりも、背景、テクスチャ、材料が多様化したイメージを生成することができます。
我々の研究は、拡散モデルが視覚モデルをテストするのに効果的な情報源となることを示唆している。
論文 参考訳(メタデータ) (2024-03-27T17:23:39Z) - Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection [13.840950434728533]
SID(State-of-the-art Synthetic Image Detection)研究は、基礎モデルからの特徴抽出の利点を強く証明している。
軽量ネットワークを介してCLIPの画像エンコーダの中間トランスフォーマーブロックから抽出した画像表現を利用する。
本手法は,20個のテストデータセットで評価し,平均+10.6%の絶対性能向上を示すことにより,最先端の手法と比較した。
論文 参考訳(メタデータ) (2024-02-29T12:18:43Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Explore the Power of Synthetic Data on Few-shot Object Detection [27.26215175101865]
Few-shot Object Detection (FSOD) は、トレーニングのいくつかの例に限って、新しいカテゴリのオブジェクト検出器を拡張することを目的としている。
近年のテキスト・画像生成モデルでは,高品質な画像を生成する上で有望な結果が得られている。
この研究は、最先端のテキスト・ツー・イメージ・ジェネレータから生成された合成画像がFSODタスクにどのように貢献するかを幅広く研究している。
論文 参考訳(メタデータ) (2023-03-23T12:34:52Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Generative Zero-shot Network Quantization [41.75769117366117]
畳み込みニューラルネットワークは、低レベルの画像生成と復元における多数のトレーニングサンプルから現実的な画像優先度を学習することができる。
また,高レベル画像認識タスクでは,本質的バッチ正規化(bn)統計をトレーニングデータなしで活用することにより,各カテゴリの「現実的」画像をさらに再構築できることを示す。
論文 参考訳(メタデータ) (2021-01-21T04:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。