論文の概要: ImagiNet: A Multi-Content Benchmark for Synthetic Image Detection
- arxiv url: http://arxiv.org/abs/2407.20020v2
- Date: Sun, 12 Jan 2025 12:12:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:29.558885
- Title: ImagiNet: A Multi-Content Benchmark for Synthetic Image Detection
- Title(参考訳): ImagiNet: 合成画像検出のためのマルチコンテンツベンチマーク
- Authors: Delyan Boychev, Radostin Cholakov,
- Abstract要約: 私たちは、写真、絵画、顔、雑多な4つのカテゴリにまたがる200万のサンプルのデータセットであるImagiNetを紹介します。
ImagiNetの合成画像はオープンソースとプロプライエタリの両方のジェネレータで作成され、各コンテントタイプの実際の画像はパブリックデータセットから収集される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent generative models produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. Potential harmful use cases of these models, necessitate the creation of robust synthetic image detectors. However, current datasets in the field contain generated images with questionable quality or have examples from one predominant content type which leads to poor generalizability of the underlying detectors. We find that the curation of a balanced amount of high-resolution generated images across various content types is crucial for the generalizability of detectors, and introduce ImagiNet, a dataset of 200K examples, spanning four categories: photos, paintings, faces, and miscellaneous. Synthetic images in ImagiNet are produced with both open-source and proprietary generators, whereas real counterparts for each content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a strong baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track which achieves evaluation AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under conditions that involve compression and resizing. The provided model is generalizable enough to achieve zero-shot state-of-the-art performance on previous synthetic detection benchmarks. We provide ablations to demonstrate the importance of content types and publish code and data.
- Abstract(参考訳): 最近の生成モデルは、実際の写真やアートワークとほとんど区別がつかないような、信頼度の高い画像を生成する。
これらのモデルの潜在的に有害なユースケースは、堅牢な合成画像検出器を作成する必要がある。
しかし、この分野の現在のデータセットには、疑わしい品質の生成された画像が含まれているか、または、主要なコンテンツタイプの例があり、基礎となる検出器の一般化性が低い。
様々なコンテンツタイプにまたがる高解像度画像のバランスの取れた量のキュレーションは、検出器の一般化に不可欠であることが判明し、写真、絵画、顔、雑多な4つのカテゴリにまたがる200KサンプルのデータセットであるImagiNetを紹介した。
ImagiNetの合成画像はオープンソースとプロプライエタリの両方のジェネレータで作成され、各コンテントタイプの実際の画像はパブリックデータセットから収集される。
ImagiNetの構造は、以下の2トラック評価システムを可能にする。
一 実物又は合成物として分類し、
二 生成モデルを特定すること。
強いベースラインを確立するため、圧縮と再サイズを伴う条件下であっても、最大0.99のAUCと86%から95%のバランスの取れた精度を達成できる自己教師付きコントラスト目標(SelfCon)を用いてResNet-50モデルを訓練する。
得られたモデルは、以前の合成検出ベンチマークでゼロショットの最先端性能を達成するのに十分一般化できる。
コンテンツタイプの重要性を実証し、コードとデータを公開するためのアブリケーションを提供します。
関連論文リスト
- SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods [9.213926755375024]
完全合成画像の作成は、ユニークな課題である。
ベンチマークデータセットの実験結果と、ワイルドなメソッドのパフォーマンスの間には、大きなギャップがしばしばあります。
本稿では,いくつかの最先端SIDモデルを統合するベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-29T09:50:16Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
我々は、深層モデルの堅牢性をベンチマークするハードイメージのためのデータソースとして、生成モデルを紹介した。
このベンチマークを ImageNet-D と呼ぶ以前の作業よりも、背景、テクスチャ、材料が多様化したイメージを生成することができます。
我々の研究は、拡散モデルが視覚モデルをテストするのに効果的な情報源となることを示唆している。
論文 参考訳(メタデータ) (2024-03-27T17:23:39Z) - Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection [13.840950434728533]
SID(State-of-the-art Synthetic Image Detection)研究は、基礎モデルからの特徴抽出の利点を強く証明している。
軽量ネットワークを介してCLIPの画像エンコーダの中間トランスフォーマーブロックから抽出した画像表現を利用する。
本手法は,20個のテストデータセットで評価し,平均+10.6%の絶対性能向上を示すことにより,最先端の手法と比較した。
論文 参考訳(メタデータ) (2024-02-29T12:18:43Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。