Quantum Algorithm for Testing Graph Completeness
- URL: http://arxiv.org/abs/2407.20069v2
- Date: Fri, 16 Aug 2024 19:46:25 GMT
- Title: Quantum Algorithm for Testing Graph Completeness
- Authors: Sara Giordano, Miguel A. Martin-Delgado,
- Abstract summary: Testing graph completeness is a critical problem in computer science and network theory.
We present an efficient algorithm using the Szegedy quantum walk and quantum phase estimation (QPE)
This approach is useful in network structure analysis, evaluating classical routing algorithms, and assessing systems based on pairwise comparisons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Testing graph completeness is a critical problem in computer science and network theory. Leveraging quantum computation, we present an efficient algorithm using the Szegedy quantum walk and quantum phase estimation (QPE). Our algorithm, which takes the number of nodes and the adjacency matrix as input, constructs a quantum walk operator and applies QPE to estimate its eigenvalues. These eigenvalues reveal the graph's structural properties, enabling us to determine its completeness. We establish a relationship between the number of nodes in a complete graph and the number of marked nodes, optimizing the success probability and running time. The time complexity of our algorithm is $\mathcal{O}(\log^2n)$, where $n$ is the number of nodes of the graph. offering a clear quantum advantage over classical methods. This approach is useful in network structure analysis, evaluating classical routing algorithms, and assessing systems based on pairwise comparisons.
Related papers
- Comparison among Classical, Probabilistic and Quantum Algorithms for
Hamiltonian Cycle problem [0.0]
Hamiltonian cycle problem (HCP) consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.
In this paper we compare some algorithms to solve aHCP, using different models of computations and especially the probabilistic and quantum ones.
arXiv Detail & Related papers (2023-11-18T02:36:10Z) - Mind the $\tilde{\mathcal{O}}$: Asymptotically Better, but Still
Impractical, Quantum Distributed Algorithms [0.0]
We present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability.
The algorithms achieve a lower round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model.
An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the speedup.
arXiv Detail & Related papers (2023-04-06T02:18:52Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - On the quantum simulation of complex networks [0.0]
Continuous-time quantum walk algorithms assume that we can simulate the dynamics of quantum systems where the Hamiltonian is given by the adjacency matrix of the graph.
We extend the state-of-the-art results on quantum simulation to graphs that contain a small number of hubs, but that are otherwise sparse.
arXiv Detail & Related papers (2022-12-12T18:55:31Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Laplacian Eigenmaps with variational circuits: a quantum embedding of
graph data [0.0]
We propose a method to compute a Laplacian Eigenmap using a quantum variational circuit.
Tests on 32 nodes graph with a quantum simulator show that we can achieve similar performances as the classical laplacian eigenmap algorithm.
arXiv Detail & Related papers (2020-11-10T14:51:25Z) - Quantum Speedup for Graph Sparsification, Cut Approximation and
Laplacian Solving [1.0660480034605238]
"spectral sparsification" reduces number of edges to near-linear in number of nodes.
We show a quantum speedup for spectral sparsification and many of its applications.
Our algorithm implies a quantum speedup for solving Laplacian systems.
arXiv Detail & Related papers (2019-11-17T17:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.