論文の概要: F-KANs: Federated Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2407.20100v1
- Date: Mon, 29 Jul 2024 15:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:15:14.435043
- Title: F-KANs: Federated Kolmogorov-Arnold Networks
- Title(参考訳): F-KANs:Kolmogorov-Arnoldネットワークのフェデレーション
- Authors: Engin Zeydan, Cristian J. Vaca-Rubio, Luis Blanco, Roberto Pereira, Marius Caus, Abdullah Aydeger,
- Abstract要約: 分類タスクにKAN(Kolmogorov-Arnold Networks)を利用する,革新的なフェデレートラーニング(FL)手法を提案する。
本研究は, 従来の多層パーセプトロン(MLP)分類タスクと比較して, 連合カンの性能を評価する。
- 参考スコア(独自算出の注目度): 3.8277268808551512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an innovative federated learning (FL) approach that utilizes Kolmogorov-Arnold Networks (KANs) for classification tasks. By utilizing the adaptive activation capabilities of KANs in a federated framework, we aim to improve classification capabilities while preserving privacy. The study evaluates the performance of federated KANs (F- KANs) compared to traditional Multi-Layer Perceptrons (MLPs) on classification task. The results show that the F-KANs model significantly outperforms the federated MLP model in terms of accuracy, precision, recall, F1 score and stability, and achieves better performance, paving the way for more efficient and privacy-preserving predictive analytics.
- Abstract(参考訳): 本稿では,KAN(Kolmogorov-Arnold Networks)を分類タスクに活用する,革新的なフェデレートラーニング(FL)手法を提案する。
連合型フレームワークにおけるkansの適応活性化機能を活用することにより、プライバシを保ちながら分類能力を向上させることを目指す。
本研究は, 従来の多層パーセプトロン (MLP) と比較し, フェデレート・カン (F-kan) の性能評価を行った。
その結果、F-KANsモデルは、精度、精度、リコール、F1スコア、安定性においてフェデレーションMLPモデルを大幅に上回り、より良いパフォーマンスを実現し、より効率的でプライバシーに配慮した予測分析の道を開いた。
関連論文リスト
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-10-02T22:56:00Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis [2.978024452652925]
Kolmogorov-Arnold Networks (KAN) は、MLP(Multi-Layer Perceptrons)に代わる有望な代替品として注目されている。
理論上は魅力的だが、Kaninは大規模なベンチマークデータセットの検証を必要とする。
論文 参考訳(メタデータ) (2024-08-14T06:15:55Z) - Kolmogorov-Arnold Network for Online Reinforcement Learning [0.22615818641180724]
Kolmogorov-Arnold Networks (KANs)は、ニューラルネットワークにおけるMLP(Multi-Layer Perceptrons)の代替としての可能性を示している。
Kansはパラメータが少なく、メモリ使用量が減ったユニバーサル関数近似を提供する。
論文 参考訳(メタデータ) (2024-08-09T03:32:37Z) - Enhancing Fast Feed Forward Networks with Load Balancing and a Master Leaf Node [49.08777822540483]
高速フィードフォワードネットワーク(FFF)は、入力空間の異なる領域が広いネットワークのニューロンの異なるサブセットを活性化する観察を利用する。
本稿では,FFFアーキテクチャにロードバランシングとマスタリーフ技術を導入し,性能向上とトレーニングプロセスの簡素化を図る。
論文 参考訳(メタデータ) (2024-05-27T05:06:24Z) - Smooth Kolmogorov Arnold networks enabling structural knowledge representation [0.0]
Kolmogorov-Arnold Networks (KAN) は、従来のマルチ層パーセプトロン(MLP)アーキテクチャに代わる、効率的かつ解釈可能な代替手段を提供する。
固有の構造的知識を活用することで、カンは訓練に必要なデータを減らすことができ、幻覚的予測を発生させるリスクを軽減することができる。
論文 参考訳(メタデータ) (2024-05-18T15:27:14Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - FedControl: When Control Theory Meets Federated Learning [63.96013144017572]
ローカル学習のパフォーマンスと進化に応じてクライアントのコントリビューションを区別する。
この手法は制御理論から着想を得ており、その分類性能はIIDフレームワークで広く評価されている。
論文 参考訳(メタデータ) (2022-05-27T21:05:52Z) - An Evaluation Study of Generative Adversarial Networks for Collaborative
Filtering [75.83628561622287]
本研究は、原論文で発表された結果の再現に成功し、CFGANフレームワークと原評価で使用されるモデルとの相違が与える影響について論じる。
この研究は、CFGANと単純でよく知られた適切に最適化されたベースラインの選択を比較した実験的な分析をさらに拡張し、CFGANは高い計算コストにもかかわらず、それらに対して一貫して競合していないことを観察した。
論文 参考訳(メタデータ) (2022-01-05T20:53:27Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
我々は、新しいノイズ強調型教師付きオートエンコーダ(NSAE)を用いて、特徴分布のより広範なバリエーションを捉えるようモデルに教える。
NSAEは入力を共同で再構築し、入力のラベルと再構成されたペアを予測することによってモデルを訓練する。
また、NSAE構造を利用して、より適応性を高め、対象領域の分類性能を向上させる2段階の微調整手順を提案する。
論文 参考訳(メタデータ) (2021-08-11T04:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。