論文の概要: Kolmogorov-Arnold Network Autoencoders
- arxiv url: http://arxiv.org/abs/2410.02077v1
- Date: Wed, 2 Oct 2024 22:56:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:05:40.825311
- Title: Kolmogorov-Arnold Network Autoencoders
- Title(参考訳): Kolmogorov-Arnoldネットワークオートエンコーダ
- Authors: Mohammadamin Moradi, Shirin Panahi, Erik Bollt, Ying-Cheng Lai,
- Abstract要約: Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have revolutionized various domains, with Multi-Layer Perceptrons (MLPs) being a cornerstone for tasks like data regression and image classification. However, a recent study has introduced Kolmogorov-Arnold Networks (KANs) as promising alternatives to MLPs, leveraging activation functions placed on edges rather than nodes. This structural shift aligns KANs closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability. In this study, we explore the efficacy of KANs in the context of data representation via autoencoders, comparing their performance with traditional Convolutional Neural Networks (CNNs) on the MNIST, SVHN, and CIFAR-10 datasets. Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy, thereby suggesting their viability as effective tools in data analysis tasks.
- Abstract(参考訳): ディープラーニングモデルは、データ回帰や画像分類といったタスクの基盤となるマルチ層パーセプトロン(MLP)など、さまざまな領域に革命をもたらした。
しかし、最近の研究では、ノードではなくエッジに置かれるアクティベーション関数を活用することで、MLPの代替としてKAN(Kolmogorov-Arnold Networks)を導入している。
この構造シフトはカンをコルモゴロフ・アルノルドの表現定理と密接に一致させ、モデル精度と解釈可能性の両方を高める可能性がある。
本研究では,MNIST,SVHN,CIFAR-10データセット上の従来の畳み込みニューラルネットワーク(CNN)と比較し,自動エンコーダによるデータ表現の文脈におけるkanの有効性を検討した。
この結果から,kanベースのオートエンコーダは,データ解析タスクにおいて有効なツールであることを示す。
関連論文リスト
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - Residual Kolmogorov-Arnold Network for Enhanced Deep Learning [0.5852077003870417]
我々はKANフレームワークを残留成分として組み込んだResidual Arnoldを紹介する。
視覚データにおける深部CNNの能力を高めるためのRKANの可能性を示す。
論文 参考訳(メタデータ) (2024-10-07T21:12:32Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov-Networks (KAN) は基本的に異なる数学的枠組みに基づいている。
Kansは継続的学習シナリオの忘れなど,いくつかの大きな問題に対処している。
コンピュータビジョンにおける連続的な学習課題における感性の評価によって調査を拡大する。
論文 参考訳(メタデータ) (2024-09-20T14:49:21Z) - Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks [0.0]
我々は,コルモゴロフ・アルノルドネットワーク(KAN)分類ヘッドとファジィプールを畳み込みニューラルネットワーク(CNN)に統合するアプローチを提案する。
比較分析により,kan と Fuzzy Pooling による改良 CNN アーキテクチャは,従来のモデルと同等あるいは高い精度で実現可能であることが示された。
論文 参考訳(メタデータ) (2024-07-23T08:18:04Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - CRNNTL: convolutional recurrent neural network and transfer learning for
QSAR modelling [4.090810719630087]
本稿では,QSARモデリングのための畳み込みリカレントニューラルネットワークと伝達学習(CRNNTL)を提案する。
我々の戦略は、特徴抽出のための畳み込みニューラルネットワークと繰り返しニューラルネットワークの両方の利点と、データ拡張手法の利点を生かしている。
論文 参考訳(メタデータ) (2021-09-07T20:04:55Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。