論文の概要: DDAP: Dual-Domain Anti-Personalization against Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.20141v1
- Date: Mon, 29 Jul 2024 16:11:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:05:24.789036
- Title: DDAP: Dual-Domain Anti-Personalization against Text-to-Image Diffusion Models
- Title(参考訳): DDAP: テキストと画像の拡散モデルに対する二重ドメインのアンチ・パーソナライゼーション
- Authors: Jing Yang, Runping Xi, Yingxin Lai, Xun Lin, Zitong Yu,
- Abstract要約: 拡散に基づくパーソナライズされたビジュアルコンテンツ生成技術は、大きなブレークスルーを達成した。
しかし、偽のニュースや個人をターゲットとするコンテンツを作るのに誤用された場合、これらの技術は社会的な危害をもたらす可能性がある。
本稿では,新しいDual-Domain Anti-Personalization framework(DDAP)を紹介する。
これら2つの手法を交互に組み合わせることで、DDAPフレームワークを構築し、両方のドメインの強みを効果的に活用する。
- 参考スコア(独自算出の注目度): 18.938687631109925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based personalized visual content generation technologies have achieved significant breakthroughs, allowing for the creation of specific objects by just learning from a few reference photos. However, when misused to fabricate fake news or unsettling content targeting individuals, these technologies could cause considerable societal harm. To address this problem, current methods generate adversarial samples by adversarially maximizing the training loss, thereby disrupting the output of any personalized generation model trained with these samples. However, the existing methods fail to achieve effective defense and maintain stealthiness, as they overlook the intrinsic properties of diffusion models. In this paper, we introduce a novel Dual-Domain Anti-Personalization framework (DDAP). Specifically, we have developed Spatial Perturbation Learning (SPL) by exploiting the fixed and perturbation-sensitive nature of the image encoder in personalized generation. Subsequently, we have designed a Frequency Perturbation Learning (FPL) method that utilizes the characteristics of diffusion models in the frequency domain. The SPL disrupts the overall texture of the generated images, while the FPL focuses on image details. By alternating between these two methods, we construct the DDAP framework, effectively harnessing the strengths of both domains. To further enhance the visual quality of the adversarial samples, we design a localization module to accurately capture attentive areas while ensuring the effectiveness of the attack and avoiding unnecessary disturbances in the background. Extensive experiments on facial benchmarks have shown that the proposed DDAP enhances the disruption of personalized generation models while also maintaining high quality in adversarial samples, making it more effective in protecting privacy in practical applications.
- Abstract(参考訳): 拡散に基づくパーソナライズされたビジュアルコンテンツ生成技術は、いくつかの参照写真から学習することで、特定のオブジェクトを作成できる重要なブレークスルーを達成した。
しかし、偽のニュースや個人をターゲットとするコンテンツを作るのに誤用された場合、これらの技術は社会的な危害をもたらす可能性がある。
この問題に対処するため、現在の手法では、トレーニング損失を対角的に最大化し、これらのサンプルでトレーニングされたパーソナライズされた生成モデルの出力を中断することで、対角サンプルを生成する。
しかし、既存の手法は拡散モデルの本質的な性質を見落としているため、効果的な防御とステルス性を維持することができない。
本稿では,新しいDual-Domain Anti-Personalization framework(DDAP)を紹介する。
具体的には、画像エンコーダの固定的かつ摂動に敏感な性質をパーソナライズして、空間摂動学習(SPL)を開発した。
その後、周波数領域における拡散モデルの特徴を利用した周波数摂動学習法(FPL)を考案した。
SPLは生成した画像全体のテクスチャを破壊し、FPLは画像の詳細に焦点を当てる。
これら2つの手法を交互に組み合わせることで、DDAPフレームワークを構築し、両方のドメインの強みを効果的に活用する。
対向サンプルの視覚的品質をさらに高めるため,攻撃の有効性を確保しつつ,背景の不要な乱れを回避しつつ,注意領域を正確に捕捉するローカライズモジュールを設計した。
顔のベンチマークに関する大規模な実験により、DDAPは個人化された生成モデルの破壊を促進するとともに、敵のサンプルの高品質を維持し、実用アプリケーションにおけるプライバシ保護をより効果的にすることを示した。
関連論文リスト
- Sparse Repellency for Shielded Generation in Text-to-image Diffusion Models [29.083402085790016]
本稿では,事前学習した拡散モデルのサンプル軌跡を,参照集合外に落下する画像上に着陸させる手法を提案する。
生成軌道全体にわたって拡散SDEに反発項を追加することでこれを実現できる。
一般的な拡散モデルにSPELLを追加することで、FIDにわずかに影響を与えながら多様性が向上し、最近のトレーニングフリーの多様性手法よりも比較的優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2024-10-08T13:26:32Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
パーソナライズされた拡散モデル(PDM)の微調整過程について,ショートカット学習のレンズを用いて検討した。
PDMは小さな逆境の摂動に影響を受けやすいため、破損したデータセットを微調整すると著しく劣化する。
本稿では,データ浄化と対照的なデカップリング学習を含むシステム防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-27T07:14:14Z) - Disrupting Diffusion: Token-Level Attention Erasure Attack against Diffusion-based Customization [19.635385099376066]
悪意のあるユーザは、DreamBoothのような拡散ベースのカスタマイズメソッドを誤用して、偽画像を作った。
本稿では,拡散モデル出力を阻害する新しい逆攻撃法であるDisDiffを提案する。
論文 参考訳(メタデータ) (2024-05-31T02:45:31Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-02T20:19:19Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
敵の訓練は、境界Lpノルムを持つ攻撃脅威モデルに対する一般的な防衛戦略である。
本稿では,2次元マニフォールド逆行訓練(DMAT)を提案する。
我々のDMATは、通常の画像の性能を改善し、Lp攻撃に対する標準的な敵の訓練と同等の堅牢性を達成する。
論文 参考訳(メタデータ) (2020-09-05T06:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。