論文の概要: Towards Localized Fine-Grained Control for Facial Expression Generation
- arxiv url: http://arxiv.org/abs/2407.20175v1
- Date: Thu, 25 Jul 2024 18:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 12:45:22.749346
- Title: Towards Localized Fine-Grained Control for Facial Expression Generation
- Title(参考訳): 顔表情生成のための局所微粒化制御に向けて
- Authors: Tuomas Varanka, Huai-Qian Khor, Yante Li, Mengting Wei, Hanwei Kung, Nicu Sebe, Guoying Zhao,
- Abstract要約: 人間、特にその顔は、豊かな表現と意図を伝える能力のために、コンテンツ生成の中心である。
現在の生成モデルは、主に平らな中立表現と文字なしの笑顔を認証なしで生成する。
顔生成における表情制御におけるAU(アクションユニット)の利用を提案する。
- 参考スコア(独自算出の注目度): 54.82883891478555
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative models have surged in popularity recently due to their ability to produce high-quality images and video. However, steering these models to produce images with specific attributes and precise control remains challenging. Humans, particularly their faces, are central to content generation due to their ability to convey rich expressions and intent. Current generative models mostly generate flat neutral expressions and characterless smiles without authenticity. Other basic expressions like anger are possible, but are limited to the stereotypical expression, while other unconventional facial expressions like doubtful are difficult to reliably generate. In this work, we propose the use of AUs (action units) for facial expression control in face generation. AUs describe individual facial muscle movements based on facial anatomy, allowing precise and localized control over the intensity of facial movements. By combining different action units, we unlock the ability to create unconventional facial expressions that go beyond typical emotional models, enabling nuanced and authentic reactions reflective of real-world expressions. The proposed method can be seamlessly integrated with both text and image prompts using adapters, offering precise and intuitive control of the generated results. Code and dataset are available in {https://github.com/tvaranka/fineface}.
- Abstract(参考訳): 近年、高品質な画像や動画を制作できるため、生成モデルの人気が高まっている。
しかし、これらのモデルを使って特定の属性と正確な制御で画像を生成することは依然として困難である。
人間、特にその顔は、豊かな表現と意図を伝える能力のために、コンテンツ生成の中心である。
現在の生成モデルは、主に平らな中立表現と文字なしの笑顔を認証なしで生成する。
怒りのような他の基本的な表現は可能であるが、ステレオタイプ的な表現に限られる。
本研究では,顔生成における表情制御におけるAU(アクションユニット)の利用を提案する。
AUは、顔の解剖に基づいて、個々の顔の筋肉の動きを記述し、顔の動きの強さを正確にかつ局所的に制御することができる。
異なるアクションユニットを組み合わせることで、典型的な感情モデルを超えて、現実の表現を反映したニュアンスと真正の反応を可能にする、非伝統的な表情を生成することができる。
提案手法は,アダプタを用いてテキストと画像のプロンプトをシームレスに統合することにより,生成した結果の正確かつ直感的な制御を実現する。
コードとデータセットは、https://github.com/tvaranka/fineface}で確認できる。
関連論文リスト
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation [13.27632316528572]
音声駆動の3D顔アニメーション技術は長年開発されてきたが、実用的応用には期待できない。
主な課題は、データ制限、唇のアライメント、表情の自然さである。
本稿では,顔の動きの異なる領域間の相関をモデル化し,生成モデルの訓練を監督し,現実的な表現を生成するCSTalkという手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T11:19:15Z) - Towards a Simultaneous and Granular Identity-Expression Control in Personalized Face Generation [34.72612800373437]
人間中心のコンテンツ生成では、事前訓練されたテキスト・ツー・イメージモデルでは、ユーザーが望んだポートレート画像を生成するのに苦労する。
同一性表現の同時制御とよりきめ細かい表現合成が可能な,新しい多モード顔生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-02T13:28:39Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
本稿では,パラメトリックな3次元顔表現をベースとした新しい顔表情翻訳フレームワークを提案する。
我々は、最先端の手法と比較して、高品質で正確な表情伝達結果を実現し、様々なポーズや複雑なテクスチャの適用性を実証する。
論文 参考訳(メタデータ) (2023-08-07T09:03:35Z) - Emotionally Enhanced Talking Face Generation [52.07451348895041]
我々は、適切な表現でビデオを生成するために、カテゴリー的感情に基づく話し顔生成フレームワークを構築した。
モデルが任意のアイデンティティ、感情、言語に適応できることを示します。
提案するフレームワークはユーザフレンドリーなWebインターフェースを備えており,感情を伴う顔生成をリアルタイムに行うことができる。
論文 参考訳(メタデータ) (2023-03-21T02:33:27Z) - Continuously Controllable Facial Expression Editing in Talking Face
Videos [34.83353695337335]
言語関連表現と感情関連表現はしばしば高結合である。
従来の画像から画像への変換手法は、我々のアプリケーションではうまく機能しない。
そこで本研究では,音声合成のための高品質な表情編集手法を提案する。
論文 参考訳(メタデータ) (2022-09-17T09:05:47Z) - Emotion-Controllable Generalized Talking Face Generation [6.22276955954213]
顔形状を意識した感情音声生成手法を提案する。
本手法は,中性感情における対象の個人像を1枚だけ微調整することで,任意の顔に適応することができる。
論文 参考訳(メタデータ) (2022-05-02T18:41:36Z) - MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation [69.35523133292389]
本稿では,顔の物理的属性を明示的にモデル化するフレームワークを提案する。
提案手法であるMOST-GANは,GANの表現力と光リアリズムを,非線形3次元形態素モデルの物理的ゆがみおよび柔軟性と統合する。
ポートレート画像の物理的特性を完全に3D制御する写真リアルな操作を実現し、照明の極端な操作、表情、およびフルプロファイルビューまでのポーズのバリエーションを可能にする。
論文 参考訳(メタデータ) (2021-11-01T15:53:36Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。