論文の概要: CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation
- arxiv url: http://arxiv.org/abs/2404.18604v1
- Date: Mon, 29 Apr 2024 11:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:57:37.654308
- Title: CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation
- Title(参考訳): CSTalk: 音声駆動型3次元顔アニメーション生成の相関性
- Authors: Xiangyu Liang, Wenlin Zhuang, Tianyong Wang, Guangxing Geng, Guangyue Geng, Haifeng Xia, Siyu Xia,
- Abstract要約: 音声駆動の3D顔アニメーション技術は長年開発されてきたが、実用的応用には期待できない。
主な課題は、データ制限、唇のアライメント、表情の自然さである。
本稿では,顔の動きの異なる領域間の相関をモデル化し,生成モデルの訓練を監督し,現実的な表現を生成するCSTalkという手法を提案する。
- 参考スコア(独自算出の注目度): 13.27632316528572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech-driven 3D facial animation technology has been developed for years, but its practical application still lacks expectations. The main challenges lie in data limitations, lip alignment, and the naturalness of facial expressions. Although lip alignment has seen many related studies, existing methods struggle to synthesize natural and realistic expressions, resulting in a mechanical and stiff appearance of facial animations. Even with some research extracting emotional features from speech, the randomness of facial movements limits the effective expression of emotions. To address this issue, this paper proposes a method called CSTalk (Correlation Supervised) that models the correlations among different regions of facial movements and supervises the training of the generative model to generate realistic expressions that conform to human facial motion patterns. To generate more intricate animations, we employ a rich set of control parameters based on the metahuman character model and capture a dataset for five different emotions. We train a generative network using an autoencoder structure and input an emotion embedding vector to achieve the generation of user-control expressions. Experimental results demonstrate that our method outperforms existing state-of-the-art methods.
- Abstract(参考訳): 音声駆動の3D顔アニメーション技術は長年開発されてきたが、実用的応用には期待できない。
主な課題は、データ制限、唇のアライメント、表情の自然さである。
唇のアライメントは多くの関連する研究を見てきたが、既存の手法は自然および現実的な表現を合成するのに苦労しており、結果として顔のアニメーションの機械的および硬い外観が生まれる。
音声から感情的特徴を抽出する研究もあるが、顔の動きのランダムさは感情の効果的な表現を制限する。
そこで本研究では,顔の動きの異なる領域間の相関をモデル化し,生成モデルの訓練を監督し,人間の顔の動きパターンに適合する現実的な表現を生成するCSTalk(Correlation Supervised)という手法を提案する。
より複雑なアニメーションを生成するために、メタヒューマンキャラクターモデルに基づく制御パラメータの豊富なセットを使用し、5つの異なる感情のデータセットをキャプチャする。
我々は、オートエンコーダ構造を用いて生成ネットワークを訓練し、感情埋め込みベクトルを入力し、ユーザ制御式の生成を実現する。
実験の結果,本手法は既存の最先端手法よりも優れていた。
関連論文リスト
- ProbTalk3D: Non-Deterministic Emotion Controllable Speech-Driven 3D Facial Animation Synthesis Using VQ-VAE [0.0]
感情と非決定主義は多様で感情に富んだ顔のアニメーションを生成するために不可欠である、と我々は主張する。
本稿では,感情制御可能な音声駆動3次元顔画像合成のための非決定論的ニューラルネットワーク手法ProbTalk3Dを提案する。
論文 参考訳(メタデータ) (2024-09-12T11:53:05Z) - EMOdiffhead: Continuously Emotional Control in Talking Head Generation via Diffusion [5.954758598327494]
EMOdiffhead(エモディフヘッド)は、感情的なトーキングヘッドビデオ生成のための新しい方法である。
感情のカテゴリや強度のきめ細かい制御を可能にする。
他の感情像アニメーション法と比較して、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-11T13:23:22Z) - DEEPTalk: Dynamic Emotion Embedding for Probabilistic Speech-Driven 3D Face Animation [14.07086606183356]
音声駆動の3D顔アニメーションは、幅広い応用によって多くの注目を集めている。
現在の方法では、音声を通して伝達されるニュアンスな感情のアンダートーンを捉えることができず、単調な顔の動きを生成する。
音声入力から直接多様で感情的に豊かな表情を生成する新しいアプローチであるDEEPTalkを紹介する。
論文 参考訳(メタデータ) (2024-08-12T08:56:49Z) - Towards Localized Fine-Grained Control for Facial Expression Generation [54.82883891478555]
人間、特にその顔は、豊かな表現と意図を伝える能力のために、コンテンツ生成の中心である。
現在の生成モデルは、主に平らな中立表現と文字なしの笑顔を認証なしで生成する。
顔生成における表情制御におけるAU(アクションユニット)の利用を提案する。
論文 参考訳(メタデータ) (2024-07-25T18:29:48Z) - EmoFace: Audio-driven Emotional 3D Face Animation [3.573880705052592]
EmoFaceは、鮮やかな感情的ダイナミクスを備えた顔アニメーションを作成するための、新しいオーディオ駆動の方法論である。
提案手法では,複数の感情で表情を生成でき,ランダムだが自然な点滅や眼球運動を生成できる。
提案手法は、ビデオゲームでプレイ不可能なキャラクターの対話アニメーションを作成し、バーチャルリアリティ環境でアバターを駆動するのに有効である。
論文 参考訳(メタデータ) (2024-07-17T11:32:16Z) - Emotional Speech-Driven Animation with Content-Emotion Disentanglement [51.34635009347183]
本研究では,感情表現の明示的な制御を可能にしつつ,音声からリップシンクを維持する3次元音声アバターを生成するEMOTEを提案する。
EmOTEは、同じデータでトレーニングされた最先端の方法よりも、リップシンクで音声駆動の顔アニメーションを生成する。
論文 参考訳(メタデータ) (2023-06-15T09:31:31Z) - Audio-Driven Talking Face Generation with Diverse yet Realistic Facial
Animations [61.65012981435094]
DIRFAは、異なるが現実的な顔のアニメーションを同一の駆動音声から生成できる新しい方法である。
同一音声に対して妥当な顔のアニメーションの変動に対応するため,トランスフォーマーに基づく確率的マッピングネットワークを設計する。
DIRFAは現実的な顔のアニメーションを効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-04-18T12:36:15Z) - Pose-Controllable 3D Facial Animation Synthesis using Hierarchical
Audio-Vertex Attention [52.63080543011595]
階層型音声頂点アテンションを利用してポーズ制御可能な3次元顔アニメーション合成法を提案する。
提案手法により,よりリアルな表情と頭部姿勢運動が得られる。
論文 参考訳(メタデータ) (2023-02-24T09:36:31Z) - Expressive Speech-driven Facial Animation with controllable emotions [12.201573788014622]
本稿では,音声から表情の表情を生成するための深層学習に基づく新しいアプローチを提案する。
広視野の表情を、制御可能な感情タイプと強度で表現することができる。
感情制御可能な顔アニメーションを可能にし、ターゲット表現を継続的に調整することができる。
論文 参考訳(メタデータ) (2023-01-05T11:17:19Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-artメソッドは、ターゲットアクターの顔トポロジを変形させ、ターゲットアクターのアイデンティティ固有の話し方や顔の慣用性を考慮せずに入力オーディオを同期させる。
本稿では,音声による表情合成手法であるImitatorについて述べる。
提案手法は,ターゲットアクターの発話スタイルを保ちながら,入力音声から時間的コヒーレントな表情を生成する。
論文 参考訳(メタデータ) (2022-12-30T19:00:02Z) - MeshTalk: 3D Face Animation from Speech using Cross-Modality
Disentanglement [142.9900055577252]
本研究では,顔全体の映像合成を高度に実現するための汎用的な音声駆動顔アニメーション手法を提案する。
このアプローチは、目のまばたきやまばたきなど、音声信号とは無関係な顔の一部のアニメーションを再現すると同時に、高精度な唇の動きを保証します。
論文 参考訳(メタデータ) (2021-04-16T17:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。