論文の概要: Global Structure-from-Motion Revisited
- arxiv url: http://arxiv.org/abs/2407.20219v2
- Date: Sun, 22 Sep 2024 21:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:05:01.110738
- Title: Global Structure-from-Motion Revisited
- Title(参考訳): グローバルな構造-動きからの再考
- Authors: Linfei Pan, Dániel Baráth, Marc Pollefeys, Johannes L. Schönberger,
- Abstract要約: 我々は,グローバルSfMにおける技術状況より優れた新しい汎用システムとして,GLOMAPを提案する。
精度とロバスト性の観点からは、最も広く使われている増分SfMであるCOLMAPよりも高い結果が得られる。
当社のシステムはオープンソース実装として共有しています。
- 参考スコア(独自算出の注目度): 57.30100303979393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering 3D structure and camera motion from images has been a long-standing focus of computer vision research and is known as Structure-from-Motion (SfM). Solutions to this problem are categorized into incremental and global approaches. Until now, the most popular systems follow the incremental paradigm due to its superior accuracy and robustness, while global approaches are drastically more scalable and efficient. With this work, we revisit the problem of global SfM and propose GLOMAP as a new general-purpose system that outperforms the state of the art in global SfM. In terms of accuracy and robustness, we achieve results on-par or superior to COLMAP, the most widely used incremental SfM, while being orders of magnitude faster. We share our system as an open-source implementation at {https://github.com/colmap/glomap}.
- Abstract(参考訳): 画像から3D構造とカメラの動きを復元することは、コンピュータビジョン研究の長年の焦点であり、Structure-from-Motion (SfM)として知られている。
この問題に対する解決策は、漸進的およびグローバルなアプローチに分類される。
これまでのところ、最もポピュラーなシステムは精度と堅牢性のために漸進的なパラダイムを踏襲しているが、グローバルなアプローチは劇的にスケーラブルで効率的である。
本研究は,グローバルSfMの問題を再考し,グローバルSfMにおける最先端技術を上回る新しい汎用システムとしてGLOMAPを提案する。
精度とロバスト性の観点からは、最も広く使われている増分SfMであるCOLMAPよりも桁違いに高速な結果が得られる。
当社のシステムは,https://github.com/colmap/glomap} でオープンソース実装として公開しています。
関連論文リスト
- Hi-GMAE: Hierarchical Graph Masked Autoencoders [90.30572554544385]
階層型グラフマスク付きオートエンコーダ(Hi-GMAE)
Hi-GMAEは、グラフ内の階層構造を扱うために設計された、新しいマルチスケールGMAEフレームワークである。
15のグラフデータセットに対する実験は、Hi-GMAEが17の最先端の自己管理競合より優れていることを一貫して示している。
論文 参考訳(メタデータ) (2024-05-17T09:08:37Z) - Distributed Global Structure-from-Motion with a Deep Front-End [11.2064188838227]
我々は,グローバルSfMがSOTAインクリメンタルSfMアプローチ(COLMAP)と同等に機能するかどうかを検討する。
我々のSfMシステムは、分散計算を活用するためにゼロから設計されており、複数のマシン上で計算を並列化し、大規模なシーンにスケールすることができる。
論文 参考訳(メタデータ) (2023-11-30T18:47:18Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Global Features are All You Need for Image Retrieval and Reranking [2.6198864241281434]
SuperGlobalは、両方のステージにグローバル機能のみを取り入れ、精度を犠牲にすることなく効率を向上する、新しいアプローチである。
我々の実験は、標準ベンチマークの最先端技術と比較して大幅に改善されている。
我々の2段階システムは、現在の単一ステージの状態を16.3%超え、高性能画像検索システムに対するスケーラブルで正確な代替手段を提供する。
論文 参考訳(メタデータ) (2023-08-14T06:13:27Z) - Recursive Generalization Transformer for Image Super-Resolution [108.67898547357127]
本稿では,大域空間情報を捕捉し,高分解能画像に適した画像SRのための再帰一般化変換器(RGT)を提案する。
我々は,RG-SAと局所的自己意識を組み合わせることで,グローバルな文脈の活用を促進する。
我々のRGTは最近の最先端の手法よりも定量的に質的に優れている。
論文 参考訳(メタデータ) (2023-03-11T10:44:44Z) - AdaSfM: From Coarse Global to Fine Incremental Adaptive Structure from
Motion [48.835456049755166]
AdaSfMは粗粒度適応型SfMアプローチであり、大規模かつ挑戦的なデータセットにスケーラブルである。
当社のアプローチはまず,低コストセンサによる計測を利用して,ビューグラフの信頼性を向上させる,粗大なグローバルSfMを実現する。
本手法では,全局所再構成をグローバルSfMの座標フレームに整合させるため,しきい値適応戦略を用いる。
論文 参考訳(メタデータ) (2023-01-28T09:06:50Z) - RING++: Roto-translation Invariant Gram for Global Localization on a
Sparse Scan Map [20.276334172402763]
本稿では、位置認識のためのロト変換不変表現と、回転と翻訳の両方のグローバル収束を持つRing++を提案する。
理論的保証により、RING++はスパーススキャン付き軽量マップを使用して、大きな視点差に対処することができる。
これはスパーススキャンマップにおけるグローバルローカライゼーションのすべてのサブタスクに対処する初めての学習不要フレームワークである。
論文 参考訳(メタデータ) (2022-10-12T07:49:24Z) - Cross-modal Local Shortest Path and Global Enhancement for
Visible-Thermal Person Re-Identification [2.294635424666456]
本稿では,局所的特徴とグローバル的特徴の同時学習に基づく2ストリームネットワークであるCM-LSP-GE(Cross-modal Local Shortest Path and Global Enhancement)モジュールを提案する。
2つの典型的なデータセットの実験結果は、我々のモデルは明らかに最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T10:27:22Z) - Is Attention Better Than Matrix Decomposition? [58.813382406412195]
我々は,長距離依存を符号化する行列分解モデルよりも自己注意の方が優れていることを示す。
本稿では,MDを解くための最適化アルゴリズムを用いて,入力表現をサブ行列に分解し,低ランクな埋め込みを再構築する一連のハンブルガーを提案する。
グローバルな文脈を学習することが不可欠であるビジョンタスクにおいて、総合的な実験が実施される。
論文 参考訳(メタデータ) (2021-09-09T20:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。